
Scale-Invariant Reinforcement Learning
in Real-Time Strategy Games

Marcelo Luiz Harry Diniz

Lemos

Universidade Federal de Minas Gerais

Belo Horizonte, Minas Gerais, Brazil

marcelolemos@dcc.ufmg.br

Ronaldo e Silva Vieira

Universidade Federal de Minas Gerais

Belo Horizonte, Minas Gerais, Brazil

ronaldo.vieira@dcc.ufmg.br

Anderson Rocha Tavares

Universidade Federal do Rio Grande

do Sul

Porto Alegre, Rio Grande do Sul

Brazil

artavares@inf.ufrgs.br

Leandro Soriano Marcolino

Lancaster University

Lancaster, United Kingdom

l.marcolino@lancaster.ac.uk

Luiz Chaimowicz

Universidade Federal de Minas Gerais

Belo Horizonte, Minas Gerais, Brazil

chaimo@dcc.ufmg.br

ABSTRACT
Real-time strategy games present a significant challenge for arti-

ficial game-playing agents by combining several fundamental AI

problems. Despite the difficulties, attempts to create autonomous

agents using Deep Reinforcement Learning have been successful,

with bots like AlphaStar beating even expert human players. Many

RTS games include several distinct world maps with different di-

mensions, which may affect the agent’s observation and the repre-

sentation of game states. However, most current architectures suffer

from fixed input sizes or require extensive and complex training.

In this paper, we overcome these limitations by combining Grid-

Wise Control with Spatial Pyramid Pooling (SPP). Specifically, we

employ the encoder-decoder framework provided by the GridNet

architecture and enhance the critic component of PPO by adding

an SPP layer to it. The new layer generates a standardized repre-

sentation of any game state regardless of the initial observation

dimensions, allowing the agent to act on any map. Our evalua-

tion demonstrates that our proposed method improves the models’

flexibility and provides a more effective and efficient solution for

training autonomous agents in multiple RTS game scenarios.

CCS CONCEPTS
• Computing methodologies→ Sequential decision making;
Neural networks; • Applied computing→ Computer games.

KEYWORDS
reinforcement learning, game-playing AI, RTS games

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SBGames 2023, November 06–11, 2023, Brazil
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Marcelo Luiz Harry Diniz Lemos, Ronaldo e Silva Vieira, Anderson Rocha

Tavares, Leandro Soriano Marcolino, and Luiz Chaimowicz. 2023. Scale-

Invariant Reinforcement Learning in Real-Time Strategy Games. In Proceed-
ings of SBGames 2023. ACM, New York, NY, USA, 9 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 INTRODUCTION
Games have become a popular testbed for Artificial Intelligence,

providing a unique environment for researchers to develop and test

new AI algorithms. Among these, Deep Reinforcement Learning

(DRL) has shown remarkable advancements by using games as a

research platform. Games like Atari titles [16], Go [20], StarCraft

II [23], and Dota 2 [4] have been particularly effective in advancing

DRL research, with RL-trained agents surpassing human experts in

these games. The implications of these advancements go beyond

the gaming world, with potential real-world applications in areas

such as robotics, autonomous driving, and more.

However, DRL approaches often struggle with fixed input sizes

and require retraining when working with different scales of input,

even if the underlying environment has the same mechanics (e.g.

training on the same game with different map sizes). Input resizing

techniques alleviate the problem but require a preprocessing step

and the definition of the neural network input size beforehand,

which might not properly fit in unforeseen data (e.g. the prede-

fined input is too small, and resizing a large input causes loss of

information).

To address this challenge, we propose a new architecture that

uses Spatial Pyramid Pooling (SPP) [9] to create a scale-invariant

DRL architecture that can be applied to any DRL domain. SPP

is a technique commonly used in scale-invariant image recogni-

tion tasks, and we adapt it to work with DRL environments. Our

approach enables the same neural network to play a game with

different input (map) sizes, greatly simplifying and speeding up

the training of DRL agents. Additionally, our approach allows for

quick transfer learning, as the agent can seamlessly handle inputs

with unforeseen sizes. Moreover, using multiple map sizes in a sin-

gle training session enriches the agent’s training and improves its

generalization ability.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SBGames 2023, November 06–11, 2023, Brazil Harry Diniz Lemos, et al.

We evaluate our approach in the Gym-𝜇RTS framework [11]. It

provides a research-friendly real-time strategy game platformwhile

retaining the main challenges of the domain: a huge state space,

a combinatorial action space, and the necessity of micromanag-

ing resources, controlling unit production, building structures, and

engaging in combat. The framework uses grids to represent the

world map, favoring the application of grid-wise control [8], where

actions are sent to every position on the map.

Our results indicate that our novel architecture improves per-

formance in single and multi-environment tasks, surpassing other

state-of-the-art agents. It also shows that using a more diverse

training comprised of multiple environments can lead to agents

performing well in various scenarios instead of being highly spe-

cific.

2 RELATEDWORK
Up to this day, the most successful attempt to develop an au-

tonomous agent for a commercial RTS was DeepMind’s AlphaS-

tar [23], which was able to beat top human players. This was a

singular achievement, mainly possible due to the extensive com-

putational infrastructure available combined with long training

sessions. Other teams have tried similar approaches but also used

thousands of CPUs and GPUs [25].

Many researchers have resorted to less hardware-intensive plat-

forms, which downsize different aspects of RTS games. For example,

𝜇RTS [11] is a grid-based framework developed in Java with simpler

dynamics than a commercial RTS; miniRTS [21] is a lightweight

RTS that is part of the ELF project and has an RL backend; and Deep

RTS [1] is a fast, highly configurable, and complex RTS platform

developed for DRL research. Another approach is to isolate parts of

the game to focus on specific challenges, as seen on the StarCraft II

Learning Environment (SC2LE) mini-games [24].

One of the main difficulties most players face in RTS games

is the ever-changing number of units in play. Since there is no

way to reliably predict how many units a player will have at any

given time, players must be capable of micromanaging an arbitrary

number of units at all times. Han et al. [8] developed a technique

that minimizes this problem by splitting the game’s map into a grid

and issuing actions per cell. They applied the Encoder-Decoder

architecture used in image segmentation tasks to select actions

for every grid cell, creating a grid-wise control that disregards the

number of units in play.

Proximal Policy Optimization (PPO) algorithms [19] are actor-

critic models that have performed well in several domains and were

also used in 𝜇RTS to great avail. By combining PPO with grid-wise

control and masking invalid actions [10], Huang et al. [11] were
able to develop an agent capable of beating state-of-the-art oppo-

nents in a very efficient manner. However, the proposed model

lacks flexibility: the network architecture must change if the map

size varies. While the encoder-decoder used for the actor is capable

of handling any map, the critic needs a fixed observation space as

input because of its fully connected architecture. Consequently, the

agent requires hard-coded layer sizes and must be trained from

scratch whenever a different map dimension is selected.

Attention mechanisms can be used in multi-agent control with

heterogeneous observation spaces. For example, a Transformer-

based approach [22] was used in multi-agent credit assignment

and joint action evaluation [13] on the Starcraft Multi-Agent Chal-

lenge [18]. While they have achieved significant success in several

domains, Transformers suffer from vanishing and exploding gradi-

ents [17] and strong dependencies on residual branches [15].

Another option to deal with varying input sizes is to change the

observation model. Fixed-size representations may lead to a waste

of memory and processing in some settings. Since most environ-

ment information is tied to entities, entity-based representations

can be very efficient in sparse domains. Graph Attention Networks

(GATs) [6] were used in single agent control using an entity-based

approach on the Arcade Learning Environment (ALE) [2] and Sim-

ple Playgrounds [12]. GATs were also used in Multi-Agent Rein-

forcement Learning to tackle Starcraft mini-games [26] on a de-

centralized approach. However, they were tested on specific tests

rather than entire RTS matches.

In our approach, we combine Grid-Wise Control with Spatial

Pyramid Pooling to create a novel scale-invariant architecture for

control problems. The result is a flexible and efficient agent that

can control an arbitrary number of units in distinct state represen-

tations without structural changes. The agent developed by Huang

et al. [11] was used as a baseline for our work, and we take ad-

vantage of some of the techniques used by them, including Invalid

Action Masking [10] and Action Composition. We also apply Re-

ward Shaping, a technique that incorporates external knowledge

into RL problems by designing a set of small rewards for actions

that can help the agent quickly learn how to reach the final goal.

Our proposed model includes two major improvements over

the baseline. First, we introduce a new network architecture that

includes Spatial Pyramid Pooling layers, producing a flexible scale-

invariant network. Second, we implement a new training procedure

that collects experience from maps with different dimensions – and,

therefore, different representation sizes – producing a more diverse

and robust learning process.

3 BACKGROUND
3.1 Grid-Wise Control
Grid-wise Control [8] is a technique used to control an arbitrary

number of entities in environments that can be divided into a grid.

The architecture employed – named GridNet – applies an encoder-

decoder combination very similar to other architectures seen in

image segmentation tasks to select an action for each cell of the

observation grid. Considering a grid with dimensions (ℎ,𝑤, 𝑛𝑓),
where (ℎ,𝑤) represents the scale of the grid and 𝑛𝑓 is the number

of feature planes, GridNet takes a state 𝑠 ∈ Rℎ×𝑤×𝑛𝑓
as input and

predicts an action 𝑎𝑖 𝑗 for each grid position (𝑖, 𝑗) with 1 ≤ 𝑖 ≤ ℎ,
1 ≤ 𝑗 ≤ 𝑤 . The resulting output is defined as an action map 𝑎 with

dimensions (ℎ,𝑤, 𝑐𝑎), where 𝑐𝑎 indicates the action dimension of

the agents.

In RTS games, actions are usually defined by a combination of

parameters, such as ordering a unit to build a base at position (𝑥,𝑦).
In this case, the action type would be build, the structure type

would be base, and the target location would comprise coordinates

𝑥 and 𝑦. As a result, the dimension 𝑐𝑎 must contain all the different

Scale-Invariant Reinforcement Learning in Real-Time Strategy Games SBGames 2023, November 06–11, 2023, Brazil

Figure 1: An example of Spatial Pyramid Pooling, assuming
that the latest convolution layer yields 256 feature maps. The
first SPP level has 16 bins of dimension 256, the second level
has 4 bins and the third level has 1 bin. The final representa-
tion given by SPP has length (16 + 4 + 1) × 256 regardless of
the input. Source: [9].

parameters necessary to predict and compose any action and its

specifications.

3.2 Spatial Pyramid Pooling
Convolutional Neural Networks (CNNs) have revolutionized Deep

Learning, especially in the computer vision field. Still, most pop-

ular CNN architectures require fixed input sizes due to the fully

connected layers. Nonetheless, real-world applications tend to en-

compass vastly heterogeneous data with images of varying sizes,

which may be incompatible with CNNs by default. To circumvent

this problem, many models use preprocessing routines – such as

cropping [14] or warping [7] – to fit the images to the input size. In

practice, neither cropping nor warping are ideal solutions as they

may result in loss of content or geometrical distortion, reducing

model accuracy and compromising recognition in some cases.

A more effective alternative is Spatial Pyramid Pooling (SPP) [9],

a computer vision method that solves the problem by generating

a fixed-length representation regardless of input dimensions. SPP

uses multi-level pooling over spatial bins without causing distor-

tions in the output. Like most pooling techniques, it uses filters to

generate a summarized representation from a given feature map.

However, unlike most pooling, the filter size is variable and depen-

dent on the input size, while a predefined number of bins generate

a constant-shape representation. As the name implies, SPP can also

combine several filters, creating a pyramid-like structure. The result

of each layer of the SPP is combined into a single vector that always

has the same size, regardless of the input size. An example can be

seen in Figure 1.

3.3 Gym-𝜇RTS
𝜇RTS is a simplified RTS game for two players designed for AI

research. Games occur in a rectangular ℎ ×𝑤 grid where each cell

may contain up to one unit, building or resource at any given time.

Map size and configuration can be easily customized before the

game starts, providing many scenarios to test AI agents. Despite

not being as complex as most commercial games of the genre, 𝜇RTS

still retains RTS’s core features and challenges.

Gym-𝜇RTS is a Reinforcement Learning interface for 𝜇RTS de-

veloped with OpenAI Gym [5] that facilitates the integration of

𝜇RTS with many popular machine learning libraries. Its observation

space is represented by a tensor (ℎ,𝑤, 𝑛𝑓), where ℎ and𝑤 are the

map’s dimensions, and 𝑛𝑓 is the number of binary feature planes.

Since the observation shape is coupled to the map’s dimensions,

agents developed for Gym-𝜇RTS must work with an arbitrary space

shape to play any possible scenario.

4 METHODOLOGY
4.1 Model Architecture
As shown in Figure 2, the model architecture is divided into three

parts: one encoder and two decoders. The encoder is composed of

convolutional layers followed by pooling layers; It takes the agent’s

observation as input and generates a concise feature map that can

be better used to predict the policy the agent should follow in the

given environment state, as well as the state’s value. While the

baseline model encoder encompasses four pairs of convolutional

and pooling layers, we noticed that downsizing it to two pairs of

layersmaintained the agent’s performance but significantly reduced

the number of parameters on the network.

The encoder output is used by the first decoder – the actor’s

decoder – to generate the probabilities of each action for each cell

of the grid. This is done by combining deconvolutional layers with

pooling layers, resulting in an output tensor with the same height

and width as the initial observation but with a different number of

channels. Each output channel is responsible for a parameter of the

possible actions and will be used to compose the action the agent

will perform. This first path of the network behaves in the same

way as the grid-wise control described previously, taking a grid

observation as input and outputting an action for each grid cell.

Once again, we reduced the reference GridNet actor by removing

the last two deconvolutional and pooling layers.

The second decoder – the critic’s decoder – uses the encoder

output to predict the state’s value function. The reference archi-

tecture is composed only of fully connected layers, and it flattens

the encoder output to pass it onto the critic’s decoder. Instead of

flattening the encoder’s output, we added an SPP layer before the

fully connected layers. This new layer generates a standardized rep-

resentation of any input passed to the critic, which allows the agent

to work properly in any environment regardless of the observation

dimensions. Despite being a simple innovation, this causes great

changes to the actor’s behavior and, as shown in our experimental

results, improves the agent’s effectiveness in most scenarios.

Details about the architecture, including all layers and their sizes

can be found on our GitHub repository
1
.

4.2 Expansion of Training Scenarios
The new model’s capabilities allow a distinct training approach.

We can leverage the agent’s expertise in one scenario to accelerate

its learning process in other similar settings. We take this idea one

step further and utilize multiple scenarios in a single training set to

1
Available at https://github.com/marcelo-lemos/MicroRTS-Py

https://github.com/marcelo-lemos/MicroRTS-Py

SBGames 2023, November 06–11, 2023, Brazil Harry Diniz Lemos, et al.

Encoder

Actor Critic

Observation

Convolution

Convolution

Deconvolution

Deconvolution

Action Map

SPP

Fully Connected

Fully Connected

State Value

Figure 2: Network Architecture.

develop a more general agent that learns to perform well in distinct

environments.

We modified PPO – shown in Algorithm 1 – to enable this more

diverse training approach. Before each algorithm iteration, a new

environment is selected for the training. The agent then collects

experience by interacting with the environment, and the policy

is updated as usual. This adjustment generates a diverse training

procedure while keeping the algorithm’s implementation simple

when using widely adopted Deep Learning libraries.

As we will see below, the strategy used to select the environ-

ment may also affect the agent’s behavior. Different approaches

may lead to more consistent learning throughout all environments

or prioritize specific environments without forsaking others. For

example, let us consider a set of three maps {𝐴, 𝐵,𝐶}, with dimen-

sions (𝑎×𝑎), (𝑏×𝑏), and (𝑐×𝑐), respectively. We could sequentially

cycle through {𝐴, 𝐵,𝐶}, ensuring the agent would experience all

three distinct representations for the same amount of steps. Another

option would be to randomly select the maps following a uniform

distribution, creating an unpredictable experience for the player.

Moreover, we can assign different weights to the performance

in different scenarios. For example, if we evaluate the agent by

its weighted average performance, with weights (0.6, 0.2, 0.2) for
(𝐴, 𝐵,𝐶), we would prioritize experience on map 𝐴. We could tai-

lor the selection strategy to meet this specific need by utilizing a

weighted random selection with the same (0.6, 0.2, 0.2) weights,
ensuring map 𝐴 would be prioritized. The strategy selection could

also be used as a form of Curriculum Learning [3], where the agent

starts playing only in simple maps and, as time passes, more com-

plex maps are added to the selection pool.

5 EXPERIMENTAL RESULTS
We verified our model’s efficacy in several experiments on Gym-

𝜇RTS, validating its performance against state-of-the-art agents.

Once again, we follow the setup employed by Huang et al. [11],

Algorithm 1 PPO with environment swap

1: for iteration = 1, 2, . . . do
2: Select environment 𝐸

3: for actor = 1, 2, . . . do
4: Run policy 𝜋𝜃𝑜𝑙𝑑 in environment 𝐸 for 𝑇 timesteps

5: Compute advantage estimates 𝐴1, . . . , 𝐴𝑇
6: end for
7: Optimize surrogate 𝐿 wrt 𝜃 , with 𝐾 epochs and minibatch

size𝑀

8: 𝜃𝑜𝑙𝑑 ← 𝜃

9: end for

designating CoacAI
2
as the main opponent in our experiments

and using diverse opponents in training to grant a more complete

experience.We trained ourmodel against CoacAI, RandomBiasedAI,

LightRushAI, and WorkerRushAI. CoacAI is the winner of the 2020

CoG MicroRTS Competition, and the other bots are part of the

𝜇RTS framework and are used as baselines for the competitions.

While the other opponents are not as relevant as CoacAI, playing

against them ensures our agent will acquire knowledge of many

strategies and will not easily lose to different opponents.

Furthermore, we use the best model
3
developed in [11] as a base-

line to compare and evaluate our approach and the impact of the pro-

posed modifications. Unless stated otherwise, our proposed model

used a single-layer SPP with 4x4 bins and trained with a sequential

map selection where maps were swapped every 100,000 steps. As

we show below, this was the best configuration we have found.

All agents were trained for 300 million steps, with the resulting

policy being tested in 100 games against CoacAI. Three map config-

urations were used, with sizes 8 × 8, 16 × 16, and 24 × 24. Since the
baseline model cannot play in multiple map dimensions without

changes to its architecture, we have used three versions, one for

each map, adapting the first fully connected layer of their critic to

accommodate the encoder’s output. All the hyperparameters used

on the experiments can be found at our GitHub repository
4
.

The game results during test time were the primary metrics used

to evaluate the agents. For easier visualization, we opted to simplify

it, and instead of using the raw results, we employ a Score metric

where a player gets 1 point for each victory and 0.5 points for each

draw.

In RL, agents receive rewards for completing certain actions

or reaching specific states, generally associated with their final

goal. Since we employ reward shaping, our agent receives rewards

from several small actions, such as collecting resources or attacking

enemy units. One of the main rewards we use is a win/loss reward,

which is always received at the end of a game: 1 in case of a win,

0 in case of a draw, or -1 in case of a loss. The sum of all rewards

received across a game (or episode) is called the episodic return,

which does not have an upper bound in our case but has a lower

bound of -1 in case the only reward received was of a loss. We use

the win/loss rewards and episodic returns received during training

as additional metrics to analyze learning progression. Since our

2
Available at https://github.com/Coac/coac-ai-microrts

3
The model did not receive an official name but was referred to as the combination of

GridNet + PPO + invalid action masking + diverse bots + encoder-decoder.

4
Available at https://github.com/marcelo-lemos/MicroRTS-Py

https://github.com/marcelo-lemos/MicroRTS-Py

Scale-Invariant Reinforcement Learning in Real-Time Strategy Games SBGames 2023, November 06–11, 2023, Brazil

B
a
s
e
l
i
n
e

P
r
o
p
o
s
e
d

B
a
s
e
l
i
n
e

P
r
o
p
o
s
e
d

B
a
s
e
l
i
n
e

P
r
o
p
o
s
e
d

B
a
s
e
l
i
n
e

P
r
o
p
o
s
e
d

0

20

40

60

80

100

08x08 16x16 24x24 MeanMap

S
c
o
r
e

Figure 3: Proposed vs. Reference model - Score - Specialized
setting.

agent plays thousands of games during training, we apply a moving

average to better visualize our graphs. Values closer to -1 indicate

the agent is losing more games than winning, while values closer

to 1 indicate the opposite. Values close to zero indicate the agent is

winning almost as much as it is losing.

Our experiments are divided into four categories as follows.

5.1 Proposed vs Baseline Model
In this first experiment, we compare our proposed model with the

best version developed by Huang et al. [11] playing against CoacAI
in two different scenarios: specialized and generalist.

5.1.1 Specialized Scenario. For each of the three maps, an agent

of each model was trained and tested exclusively on it. As shown

in Figure 3, the proposed model outperformed the baseline in all

three maps. The greatest difference occurred on the 8 × 8 map,

where the original lost all 100 games against CoacAI, while the

proposed version achieved a score of 70 points. The baseline model

architecture and hyperparameters were designed for the 16 × 16
map, which may cause it to function improperly on settings that

require different strategies. Both the 16×16 and 24×24maps are big,

and the strategies that work best on them involve developing more

military structures and combat units. Meanwhile, the 8 × 8 map

is smaller than the other two and favors quicker strategies, such

as creating the maximum amount of simple workers and sending

them to attack the enemy as soon as they are ready.

Figures 4 and 5 show that the win/loss reward and the episodic

return are very close for the two models tested, except for the 8 × 8
map once again, where the original model had trouble learning how

to play the game effectively. After 100 million steps, its performance

dropped, and it could not recover. Our novel architecture does

not impair performance when focusing on a single environment

and can even improve the results. We also notice that the episodic

returns differ from onemap to anothermainly because of the reward

shaping we use. In larger maps, units must travel greater distances,

causing games to last longer and allowing the agent to get more

rewards from small actions.

5.1.2 Generalist Scenario. Since only the proposed model can play

any map without structural changes, we compare the baseline agent

results in single map training (as above) with the proposed model

in a generalist setup, where the training occurs over multiple maps.

0 100M 200M 300M

−1

−0.5

0

0.5

1

Steps

W
i
n
/
L
o
s
s
R
e
w
a
r
d Original 8x8

Proposed 8x8

Original 16x16

Proposed 16x16

Original 24x24

Proposed 24x24

Figure 4: Proposed vs. Reference model - Win/Loss Reward -
Specialized setting.

0 100M 200M 300M

0

100

200

Steps

E
p
i
s
o
d
i
c
R
e
t
u
r
n

Baseline 8x8

Proposed 8x8

Baseline 16x16

Proposed 16x16

Baseline 24x24

Proposed 24x24

Figure 5: Proposed vs. Reference model - Episodic Return -
Specialized setting.

Figure 6 shows that the specialized agents of the baseline model

performed better than our generalist agent in two of the three maps.

On 16×16, the baseline received 36.5 more points than the proposed

model, but on the 24 × 24, the difference was a lot smaller, with

the baseline being only 3.5 points better. Lastly, on the 8 × 8 map,

the proposed model achieved 97 points against zero of the baseline.

When considering all maps, our proposed model achieved a better

mean score, almost 20 points higher than the baseline.

One important detail to note is that the proposed model had

a third of the total training budget of the baseline model in this

setting. The baseline had to be trained in each map individually for

300 million steps, totaling 900 million. In contrast, the proposed

model trained a single time for 300 million total. Even with the

heavily reduced budget, we observe a significant performance im-

provement.

Figure 7 shows that the win/loss reward received by the general-

ist agent is very similar to the baseline on maps 16× 16 and 24× 24,
while Figure 8 shows that the generalist agent’s episodic returns

are biased towards the 8 × 8 baseline. The generalist is trained on

all three maps for the same number of steps. Since the 8 × 8 map is

small and games are short, the agent completes more episodes on

it, skewing the curve towards the 8 × 8 baseline.

5.2 Specialized vs General Training
To consolidate whether training in various scenarios instead of

focusing on a single environment is advantageous for the agent, we

tested four agents of our proposedmodel with the same architecture

and configuration, each trained in different map settings: (i) 8 × 8
map only, (ii) 16×16map only, (iii) 24×24map only, and (iv) all three

maps. Despite the different training, they were all evaluated on all

SBGames 2023, November 06–11, 2023, Brazil Harry Diniz Lemos, et al.

B
a
s
e
l
i
n
e

P
r
o
p
o
s
e
d

B
a
s
e
l
i
n
e

P
r
o
p
o
s
e
d

B
a
s
e
l
i
n
e

P
r
o
p
o
s
e
d

B
a
s
e
l
i
n
e

P
r
o
p
o
s
e
d

0

20

40

60

80

100

08x08 16x16 24x24 MeanMap

S
c
o
r
e

Figure 6: Proposed vs. Reference Model - Score - Generalist
setting.

0 100M 200M 300M

−1

−0.5

0

0.5

1

Steps

W
i
n
/
L
o
s
s
R
e
w
a
r
d Baseline 8x8

Baseline 16x16

Baseline 24x24

Proposed

Figure 7: Proposed vs. Reference model - Episodic returns -
Generalist setting.

0 100M 200M 300M

0

100

200

Steps

E
p
i
s
o
d
i
c
R
e
t
u
r
n

Baseline 8x8

Baseline 16x16

Baseline 24x24

Proposed

Figure 8: Proposed vs. Reference model - Episodic returns -
Generalist setting.

three maps and we also included a 32 × 32 map in the evaluation

that was not included in any agent’s training.

From now onward, we refer to each agent as S-08x08, S-16x16,

and S-24x24 for the agents trained solely on maps 8 × 8, 16 × 16,
and 24 × 24, respectively, and generalist for the agent trained on all

maps.

Figure 9 shows that the specialized training performed better

than the generalist agent in two of the three maps. On 16 × 16, the
S-16x16 received 39 more points than the generalist, but on the

24 × 24, the difference was a lot smaller, with the S-24x24 being

only 17 points better. On the 8 × 8 map, the generalist achieved

97 points against 70 of the S-08x08. Lastly, on the 32 × 32 map –

which was not seen during training – the generalist achieved the

second-best performance, with 53 points against the 65 points of

the S-24x24. All four maps present the same structure and units,

S
-
0
8
x
0
8

S
-
1
6
x
1
6

S
-
2
4
x
2
4

G
e
n
e
r
a
l
i
s
t

S
-
0
8
x
0
8

S
-
1
6
x
1
6

S
-
2
4
x
2
4

G
e
n
e
r
a
l
i
s
t

S
-
0
8
x
0
8

S
-
1
6
x
1
6

S
-
2
4
x
2
4

G
e
n
e
r
a
l
i
s
t

S
-
0
8
x
0
8

S
-
1
6
x
1
6

S
-
2
4
x
2
4

G
e
n
e
r
a
l
i
s
t

S
-
0
8
x
0
8

S
-
1
6
x
1
6

S
-
2
4
x
2
4

G
e
n
e
r
a
l
i
s
t

0

20

40

60

80

100

08x08 16x16 24x24 32x32 MeanMap

S
c
o
r
e

Figure 9: Specialized vs Generalist - Score.

0 100M 200M 300M

−1

−0.5

0

0.5

1

Steps

W
i
n
/
L
o
s
s
R
e
w
a
r
d S-08x08

S-16x16

S-24x24

Generalist

Figure 10: Specialized vs Generalist - Win/Loss reward.

0 100M 200M 300M

0

100

200

Steps

E
p
i
s
o
d
i
c
R
e
t
u
r
n

S-08x08

S-16x16

S-24x24

Generalist

Figure 11: Specialized vs Generalist - Episodic Return.

the only difference being the map’s scale. This factor gave an edge

to S-24x24 due to the similarity in the scale of the training map and

the 32×32map. Considering all maps, the generalist agent achieved

a better mean score, 17 points higher than the second place.

Both the win/loss reward and the episodic return – seen in Fig-

ures 10 and 11, respectively – were similar to the ones of the previ-

ous experiment. The only major difference was the S-08x08 agent,

which, unlike the baseline model, managed to attain good results

on map 8 × 8 due to the flexibility of our proposed model.

5.3 Environment Selection
As discussed before, our training method involves swapping envi-

ronments mid-training. We investigate the impacts of the strategy

used to select the new environment, specifically the method and

frequency of the selection.

Scale-Invariant Reinforcement Learning in Real-Time Strategy Games SBGames 2023, November 06–11, 2023, Brazil

R
a
n
d
o
m

S
e
q
u
e
n
t
i
a
l

R
a
n
d
o
m

S
e
q
u
e
n
t
i
a
l

R
a
n
d
o
m

S
e
q
u
e
n
t
i
a
l

R
a
n
d
o
m

S
e
q
u
e
n
t
i
a
l

0

20

40

60

80

100

08x08 16x16 24x24 MeanMap

S
c
o
r
e

Figure 12: Random vs sequential selection - Score.

0 100M 200M 300M

0

100

200

Steps

E
p
i
s
o
d
i
c
R
e
t
u
r
n

Sequential

Random

Figure 13: Random vs Sequential selection - Episodic Return.

0 100M 200M 300M

−1

−0.5

0

0.5

1

Steps

W
i
n
/
L
o
s
s
R
e
w
a
r
d Sequential

Random

Figure 14: Random vs sequential selection -Win/Loss reward.

5.3.1 Selection Method. Two methods were verified, random and

sequential. In the sequential method, we cycle through a predefined

sequence of maps from smallest to largest.

As seen in Figure 12, the sequential selection outperformed ran-

dom in all three maps tested, particularly on map 8 × 8, where the
random method lost all 100 games, whereas the sequential won 97.

The random method’s episodic return, shown in Figure 13, reveals

that the random selection is much less stable than the sequential

one, which is directly related to the reduction of the win/loss reward

– seen in Figure 14 – and the resulting policy. Sequential selection

results in better and smoother learning processes.

5.3.2 Change Frequency. To evaluate the change frequency’s im-

pact, we utilized only the sequential method and ensured our agent

experienced each environment for the same total steps. We tested

two different frequencies, one changing every 100 million steps

– causing each environment to be seen a single time – and one

A
-
1
0
0
M

B
-
1
0
0
K

A
-
1
0
0
M

B
-
1
0
0
K

A
-
1
0
0
M

B
-
1
0
0
K

A
-
1
0
0
M

B
-
1
0
0
K

0

20

40

60

80

100

08x08 16x16 24x24 MeanMap

S
c
o
r
e

Figure 15: Environment swap frequency - agents’ score.

0 100M 200M 300M

−1

−0.5

0

0.5

1

Steps

W
i
n
/
L
o
s
s
R
e
w
a
r
d A-100M

B-100K

Figure 16: Environment swap frequency - win/loss reward.

0 100M 200M 300M

0

100

200

Steps

E
p
i
s
o
d
i
c
R
e
t
u
r
n

A-100M

B-100K

Figure 17: Environment swap frequency - episodic return.

changing every 100,000 steps. We refer to them as A-100M and

B-100K, respectively.

As seen in Figure 15, the agent B-100K, trained with more fre-

quent swaps, achieved better results on the test games on most

maps, except for the 24 × 24 map, where the score was 3.5 points

below A-100M. Figure 16 shows that the agent that trained for

longer periods before swapping environments presented a big drop

in performance during the change of context. The agent specialized

in a single map after training for a long period on it, but when

the environment changed, it took some time to adapt the knowl-

edge acquired to the new situations. Figure 17 shows the episodic

return, where we can see when the map changes occur for the A-

100M agent by the steps created. Meanwhile, changing maps more

frequently led to smooth and consistent learning.

5.4 SPP Layer Size
We study the impact of different sizes of the SPP layer in our agent

by comparing four different compositions. The layers tested are (i)

SBGames 2023, November 06–11, 2023, Brazil Harry Diniz Lemos, et al.

2
x
2
B
i
n
s

4
x
4
B
i
n
s

8
x
8
B
i
n
s

A
l
l
t
h
r
e
e

2
x
2
B
i
n
s

4
x
4
B
i
n
s

8
x
8
B
i
n
s

A
l
l
t
h
r
e
e

2
x
2
B
i
n
s

4
x
4
B
i
n
s

8
x
8
B
i
n
s

A
l
l
t
h
r
e
e

2
x
2
B
i
n
s

4
x
4
B
i
n
s

8
x
8
B
i
n
s

A
l
l
t
h
r
e
e

0

20

40

60

80

100

08x08 16x16 24x24 MeanMap

S
c
o
r
e

Figure 18: SPP Layer Size - Score.

0 100M 200M 300M

−1

−0.5

0

0.5

1

Steps

W
i
n
/
L
o
s
s
R
e
w
a
r
d 2x2 Bins

4x4 Bins

8x8 Bins

All three

Figure 19: SPP Layer Size - Win/Loss reward.

0 100M 200M 300M

0

50

100

150

Steps

E
p
i
s
o
d
i
c
R
e
t
u
r
n

2x2 Bins

4x4 Bins

8x8 Bins

All three

Figure 20: SPP Layer Size - Episodic return.

a single layer with 2 × 2 bins, (ii) a single layer with 4 × 4 bins, (iii)
a single layer with 8 × 8 bins, and (iv) three layers with 2 × 2, 4 × 4,
and 8 × 8 bins. All four architectures were trained and tested on all

three map dimensions.

As shown in Figure 18, single-layer architectures with 2 × 2 and
4 × 4 bins attained the best results, with mean scores of 73.5 and

76, respectively. In contrast, the bigger architectures exhibit worse

performances, especially on map 16 × 16. The small single layers

displayed better generalization than bigger or multiple ones. Fig-

ures 19 and 20 show that all four configurations performed closely

during training. The biggest single layer, with 8 × 8 bins, deviated
more from the others. Its win/loss reward received dipped around

80M and 260M steps. It eventually recovered from the first dip but

not the second one, which surely impacted the final policy.

6 CONCLUSION
In this paper, we address the challenge of Reinforcement Learning

architectures that struggle to adapt to varying state representation

sizes. We propose a novel architecture that combines Grid-wise

Control and Spatial Pyramid Pooling to create a flexible model

capable of acquiring knowledge from any grid-like environment

without requiring structural changes. Consequently, this model can

seamlessly transfer knowledge from one environment to similar

ones. Additionally, we have developed a new training procedure

that involves multiple environments with distinct state represen-

tation sizes. This approach can be tailored to emphasize certain

environments more than others, depending on the situation’s needs.

The proposed architecture and algorithm were evaluated using

the Gym-𝜇RTS framework. Our results show that our new agent

outperforms other state-of-the-art models, achieving superior re-

sults with greater efficiency and generalization. Furthermore, even

in scenarios where our agent was at a disadvantage, with a reduced

training budget, it surpassed the baseline agents in some cases.

As for future work, we plan to expand our map roster to see if the

agent’s performance can remain high across an arbitrary number

of maps. We also plan on investigating other strategies for PPO’s

environment selection – such as a weighted random selection –

and their impact on the learning progress.

ACKNOWLEDGEMENTS
This work was partially supported by CAPES (finance code 001 and

PRINT program), CNPq (grant 311900/2020-8), and Fapemig (grant

PPM-00563-18).

REFERENCES
[1] Per-Arne Andersen, Morten Goodwin, and Ole-Christoffer Granmo. 2018. Deep

RTS: a game environment for deep reinforcement learning in real-time strategy

games. In 2018 IEEE conference on computational intelligence and games (CIG).
IEEE, 1–8.

[2] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The

arcade learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research 47 (2013), 253–279.

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.

Curriculum learning. In Proceedings of the 26th annual international conference
on machine learning. 41–48.

[4] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław

Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris

Hesse, et al. 2019. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680 (2019).

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[6] Shaked Brody, Uri Alon, and Eran Yahav. 2021. How attentive are graph attention

networks? arXiv preprint arXiv:2105.14491 (2021).
[7] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich

feature hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
580–587.

[8] Lei Han, Peng Sun, Yali Du, Jiechao Xiong, Qing Wang, Xinghai Sun, Han Liu,

and Tong Zhang. 2019. Grid-wise control for multi-agent reinforcement learning

in video game AI. In International Conference on Machine Learning. PMLR, 2576–

2585.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Spatial pyramid

pooling in deep convolutional networks for visual recognition. IEEE transactions
on pattern analysis and machine intelligence 37, 9 (2015), 1904–1916.

[10] Shengyi Huang and Santiago Ontañón. 2022. A Closer Look at Invalid Action

Masking in Policy Gradient Algorithms. In Proceedings of the Thirty-Fifth Inter-
national Florida Artificial Intelligence Research Society Conference, FLAIRS 2022,
Hutchinson Island, Jensen Beach, Florida, USA, May 15-18, 2022, Roman Barták,

Fazel Keshtkar, and Michael Franklin (Eds.). https://doi.org/10.32473/flairs.v35i.

130584

[11] Shengyi Huang, Santiago Ontañón, Chris Bamford, and Lukasz Grela. 2021.

Gym-𝜇RTS: Toward Affordable Full Game Real-time Strategy Games Research

with Deep Reinforcement Learning. In 2021 IEEE Conference on Games (CoG),

https://doi.org/10.32473/flairs.v35i.130584
https://doi.org/10.32473/flairs.v35i.130584

Scale-Invariant Reinforcement Learning in Real-Time Strategy Games SBGames 2023, November 06–11, 2023, Brazil

Copenhagen, Denmark, August 17-20, 2021. IEEE, 1–8. https://doi.org/10.1109/

CoG52621.2021.9619076

[12] Vince Jankovics, Michael Garcia Ortiz, and Eduardo Alonso. 2022. Efficient

entity-based reinforcement learning. arXiv preprint arXiv:2206.02855 (2022).
[13] Muhammad Junaid Khan, Syed Hammad Ahmed, and Gita Sukthankar. 2022.

Transformer-Based Value Function Decomposition for Cooperative Multi-Agent

Reinforcement Learning in StarCraft. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, Vol. 18. 113–119.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classi-

fication with deep convolutional neural networks. Commun. ACM 60, 6 (2017),

84–90.

[15] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. 2020. Un-

derstanding the difficulty of training transformers. arXiv preprint arXiv:2004.08249
(2020).

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[17] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty

of training recurrent neural networks. In International conference on machine
learning. PMLR, 1310–1318.

[18] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Far-

quhar, Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob

Foerster, and Shimon Whiteson. 2019. The starcraft multi-agent challenge. arXiv
preprint arXiv:1902.04043 (2019).

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

arXiv:1707.06347 http://arxiv.org/abs/1707.06347

[20] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. Nature 529, 7587 (2016), 484–489.
[21] Yuandong Tian, Qucheng Gong, Wenling Shang, Yuxin Wu, and C Lawrence

Zitnick. 2017. Elf: An extensive, lightweight and flexible research platform for

real-time strategy games. Advances in Neural Information Processing Systems 30
(2017).

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[23] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-

drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,

Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent

reinforcement learning. Nature 575, 7782 (2019), 350–354.
[24] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha

Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,

Julian Schrittwieser, et al. 2017. Starcraft ii: A new challenge for reinforcement

learning. arXiv preprint arXiv:1708.04782 (2017).
[25] XiangjunWang, Junxiao Song, Penghui Qi, Peng Peng, Zhenkun Tang,Wei Zhang,

Weimin Li, Xiongjun Pi, Jujie He, Chao Gao, et al. 2021. SCC: an efficient deep

reinforcement learning agent mastering the game of StarCraft II. In International
Conference on Machine Learning. PMLR, 10905–10915.

[26] Won Joon Yun, Sungwon Yi, and Joongheon Kim. 2021. Multi-agent deep re-

inforcement learning using attentive graph neural architectures for real-time

strategy games. In 2021 IEEE International Conference on Systems, Man, and Cy-
bernetics (SMC). IEEE, 2967–2972.

https://doi.org/10.1109/CoG52621.2021.9619076
https://doi.org/10.1109/CoG52621.2021.9619076
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Grid-Wise Control
	3.2 Spatial Pyramid Pooling
	3.3 Gym-MicroRTS

	4 Methodology
	4.1 Model Architecture
	4.2 Expansion of Training Scenarios

	5 Experimental Results
	5.1 Proposed vs Baseline Model
	5.2 Specialized vs General Training
	5.3 Environment Selection
	5.4 SPP Layer Size

	6 Conclusion
	References

