
Exploring Deep Reinforcement Learning for
Battling in Collectible Card Games

Ronaldo e Silva Vieira
Dep. de Ciência da Computação

Univ. Federal de Minas Gerais
Belo Horizonte, Brazil

ronaldo.vieira@dcc.ufmg.br

Anderson Rocha Tavares
Instituto de Informática

Univ. Federal do Rio Grande do Sul
Porto Alegre, Brazil
artavares@inf.ufrgs.br

Luiz Chaimowicz
Dep. de Ciência da Computação

Univ. Federal de Minas Gerais
Belo Horizonte, Brazil
chaimo@dcc.ufmg.br

Abstract—Collectible card games (CCGs), such as Magic: the
Gathering and Hearthstone, are a challenging domain where
game-playing AI arguably has not yet reached human-level per-
formance. We propose a deep reinforcement learning approach
to battling in CCGs, using Legends of Code and Magic, a CCG
designed for AI research, as a testbed. To do so, we formulate
the battles as a Markov decision process, train agents to solve it,
and evaluate them against two existing agents of different skill
levels. Contrasting with the current state-of-the-art, our resulting
agents act fast and can play many battles per second, despite their
limited performance. We identify limitations and discuss several
promising directions for improvement.

Index Terms—collectible card games, reinforcement learning,
artificial intelligence

I. INTRODUCTION

In collectible card games (CCGs), such as Magic: the
Gathering or Hearthstone, players build a deck from a broad
set of cards representing creatures and spells and use it to
battle other players. From an AI standpoint, CCG battles are
turn-based, two-player games containing hidden information,
non-determinism, large combinatorial state and action spaces,
and rules that may change throughout the game. These factors
make them a more challenging domain than games like Go and
Texas Hold’em Poker, the protagonists of recent breakthroughs
in game-playing AI [1], [2].

Fast human-level AI battlers for CCGs would enable better
playtesting tools and help CCG designers in the difficult
task of game balancing. They would also provide challenging
opponents for human players. Current state-of-the-art primar-
ily relies on tree-search algorithms [3]–[8], which require
seconds to play a single battle. Reinforcement learning [9] and
ontology-based [10] approaches were also proposed. However,
to our knowledge, human-level performance has not been
achieved yet [6], [10].

We propose a deep reinforcement learning approach for
battles in collectible card games. To do so, we formulate
battling as a Markov decision process and train deep neural
networks with a variant of the Proximal Policy Optimization
algorithm (PPO) [11] to solve it. The resulting agents receive
a representation of the game state as input, process it on

This work was supported by CAPES, CNPq, and Fapemig.
978-1-6654-6156-6/22/$31.00 ©2022 IEEE

a multilayer perceptron, and output a single action to be
performed in-game. Without using search, the agents can play
many battles per second.

We use Legends of Code and Magic 1.2 (LOCM) as a
testbed. LOCM is a simple, finite, and deterministic CCG
designed especially for AI research. We evaluate our resulting
agents in battles with random decks against two agents of
different skill levels. We conduct a hyperparameter tuning and
verify that our agents are faster than the state-of-the-art yet
that they achieve a limited win rate.

Our main contribution is a deep reinforcement learning ap-
proach to the battling problem in CCGs that yields fast agents
and is trainable on a single desktop computer with modest con-
figuration. Secondary contributions are: (i) an analysis and dis-
cussion of factors that may have restrained the agents’ perfor-
mance, pointing promising research directions; and (ii) repro-
ducible experiments using exclusively open-source libraries.

II. RELATED WORK

There are many commercial CCGs available. However,
most of the current literature on game-playing AI for CCGs
concentrates on the two most popular: Magic: the Gathering
and Hearthstone. The two games share many of their core
rules, thus, we will address their literature indistinguishably.
In 2018, Legends of Code and Magic was proposed [12],
aiming to foster research on CCGs with a reduced yet
representative subset of the rules found in commercial CCGs.

By far, the current most successful approaches to battling
use tree-search algorithms, which examine portions of the
game-tree to reach a decision. In the game tree, nodes rep-
resent states and edges represent actions, connecting a state to
its successor given that action. The root node is the current
game state, where the player must make a move. Leaf nodes
are terminal states, where the game finishes.

Since the usual amount of nodes in a CCG game tree
makes it unfeasible to explore the entire tree, the maximum
tree height is usually limited. Upon reaching the maximum
height, the deepest nodes are scored with an heuristic, which is
often machine learned [6], [9], [13], evolved with evolutionary
algorithms [7], [14], or handcrafted [5]. Algorithms such
as Monte Carlo Tree Search [15] may evaluate a node by
estimating its win rate via simulated battles between simple

agents, beginning at that node. This agent may be random [3],
heuristic [3] or machine learned [8]. The hidden information
present in CCGs is not handled by tree-search methods by
default. Most approaches ignore it, but some efforts were
made to determinize it [4], i.e., sample possible values to all
unknown data, or predict [16] it.

In all battling literature, the feature extraction process is
often a collection of all numeric variables in the game state
and may include some hand-engineered features. Magic: the
Gathering cards and Hearthstone cards may have its in-game
effects described in natural language, what makes thoroughly
extracting card features an AI challenge on its own. While
most work on battling so far simply ignores card text, some
efforts have been made using word2vec models [6], [17] and
long short-term memory layers [18].

Either for calculating next states in tree searches, gener-
ating datasets of game states or learning by interaction with
reinforcement learning, a forward model is needed. Most of
the literature use open-source implementations of the game’s
rules, such as Magarena,1 Sabberstone,2 or Metastone,3 which
often come with limitations (such as not having all cards or all
rules) but are considered close enough to the original game.

A single work uses reinforcement learning to tackle the
battling task [9] on Hearthstone. They define a basic set of
features (both players’ health points, attributes of the cards
present in the board and some domain-knowledge features)
and apply the Q-learning algorithm with separate multilayer
perceptron neural networks for playing cards and for attacking
with creatures. The output indicates the quality values (Q-
values) of every possible action on that specific game state.

We believe that deeper neural networks than used in
[9] trained with deep reinforcement learning algorithms can
thoroughly encode raw CCG game states (with no feature
engineering), capture the intricate relationship between cards
and rules, and select actions that efficiently lead a player to
victory. Since there is no tree search involved and due to GPU-
based parallelism, we argue that the resulting battle agents
would act faster than the current state-of-the-art.

III. LEGENDS OF CODE AND MAGIC

We instantiate our approach on Legends of Code and Magic
(LOCM) version 1.2. In LOCM, there are two main types of
cards: creatures and items. Creature cards are used to attack
the opponent creatures or the opponent, while item cards are
used to apply varied effects such as increasing a creature’s
attack attribute or removing all of its abilities. Figure 1 shows
a creature card in LOCM 1.2.

In a battle, each player starts with 30 health points and one
mana point, which is recharged and increased by one each
turn (up to a maximum of 12). They also start with four cards
in their hand (drawn from their shuffled deck) and draw one
more each turn. The battle ends when a player reaches zero

1https://magarena.github.io
2https://github.com/HearthSim/SabberStone
3https://github.com/demilich1/metastone

Cost

Defense

Abilities

Card draw
modifier

Player health
modifier

Opponent
health

modifier

Attack

Card type (frame color)

Fig. 1. An example of a LOCM 1.2 creature card and its features.

or fewer health points, and their opponent wins. The players
take turns in which they can:

• Summon a creature: spend mana equivalent to a creature
card’s cost to place it on the board. The player must
choose which of the two lanes to place the creature.

• Use an item: spend mana equivalent to an item card’s
cost to apply the item’s effects to a target. The target
may be any creature on the board or the opponent.

• Attack with a creature: select one of their creatures
on the board to deal damage equivalent to that creature’s
attack attribute to a target. The target may be the opponent
or any creature on the same lane as the attacking creature.
Damage on creatures reduces their defense attribute (any
creature with 0 or fewer defense points is removed from
the board), while damage on players reduces their health
points. Creatures can attack once per turn and cannot
attack the turn they were summoned.

• Pass the turn.
While LOCM’s rules are simpler than those of commercial

CCGs, they still represent the essential characteristics of the
genre: drawing cards from a custom deck, using mana to
play cards, having creature and spell/item cards with different
abilities, and combat with creatures. LOCM is also finite:
each player can have up to eight cards in their hand and six
creatures on the board (three on each lane). A creature may
have any combination of the six abilities present in the game,
which affect the combat rules regarding that creature.4

IV. METHODOLOGY

To tackle LOCM’s battle with deep reinforcement learning,
we formulate it as a Markov decision process (MDP). The
resulting episodic MDP is a tuple (S,A, T,R, γ) whose
elements are defined next:

• The set of states S contains all possible game states of a
battle turn in LOCM. A game state in a battle consists of
all the information the active player can observe at any
given moment:

4For a comprehensive list of LOCM 1.2’s rules, see https://github.com/
acatai/Strategy-Card-Game-AI-Competition/blob/master/GAME-RULES.md

– The players’ statistics (4 features, 2 players);
– Which cards are in the active player’s hand (8 card

slots, 160 possible cards, 1 player);
– Which creatures are on the players’ board (6 creature

slots, 9,216 possible creatures, 2 players).
Hence, the size of S is:

|S| = (2× 4)× (1608)× (2× 9,2166) ≈ 4.21× 1042.

• The set of actions A at any turn consists of the actions
available to the active player. A player can always
PASS their turn, SUMMON creature cards from their
hand to one of the lanes, USE item cards from their
hand targeting a creature on the board or their opponent,
or make their creatures on the board ATTACK another
opponent creature on the same lane or the opponent. The
possible combinations of card indexes on hand, lanes,
item targets, attacking creatures, and attacking targets
yield a total of 1 PASS action, 16 SUMMON actions, 104
USE actions, and 24 ATTACK actions, thus:

|A| = 1 + 16 + 104 + 24 = 145.

• The transition function T (st+1|st, at) follows the rules
of the battle.

• The reward function R(s) rewards the agent at the end
of the battle with 1 if they won and −1 if they lost.
Formally,

R(s) =

0, if s is non-terminal,
1, if s is terminal and the battle was won,
−1, if s is terminal and the battle was lost.

• The discount factor γ equals 0.99 to slightly encourage
shorter episodes yet still reward all choices in a battle
since all may contribute equally to whichever reward the
agent obtains at the end.

Finding a solution to this MDP is equivalent to developing
a strategy to battle in LOCM. In other words, an agent can
play a battle following any policy π(a|s) that maps every state
s in S to a probability distribution over every action a in A.

We tackle the battle MDP with deep reinforcement learning.
In other words, we train a deep neural network to act as
a player in the game. In each battle turn, we convert the
game state to a numeric vector containing the relevant features
normalized to the range of [−1, 1]. A zero vector represents
empty card slots on the player’s hand and board. We then give
this numeric vector as input to the network, which outputs its
policy (a probability distribution over all 145 actions). At last,
we sample an action from the policy and perform it in the
game. Figure 2 illustrates this interaction loop.

We use a variant of the Proximal Policy Optimization
(PPO) algorithm [11], a standard go-to algorithm in deep
reinforcement learning. Our network architecture comprises
a standard multi-layer perceptron with two output heads. The
first is a linear layer with 145 values, followed by a softmax,
representing the policy π(a|s) for the game state s received
as input. The second is a linear layer with a single value,

Game Player statistics

Cards in hand

Own creatures

Enemy creatures

+

Action
(e.g., attack creature #5 with creature #2)

Agent

Fig. 2. Interaction loop between our agent and the game during a battle in
LOCM. The agent receives a representation of the game’s current state and
decides which action to perform.

representing the value function Vπ(s) for the game state s
received as input (PPO uses this estimated value function to
calculate its loss).

Despite having 145 different actions, not all are always valid
actions. For instance, if a player has no cards in their hand,
then all SUMMON and USE actions are invalid. Most states in
S have only a few valid actions, and preliminary experiments
revealed that this sparseness critically impacts the convergence
of reinforcement learning algorithms. Thus, we use a variant
of the PPO algorithm with invalid action masking [19]: before
the softmax activation, all logits that refer to invalid actions
are set to −∞. As a result, they have zero probability in the
resulting softmax distribution.

Our feature extraction process works as follows: we select
four relevant features from the statistics of each player, namely,
their health points, mana points, next rune, and amount of
cards to be drawn next turn. From the cards in the active
player’s hand, we select the card type, cost, attack, defense,
abilities, health modifiers, and card draw modifiers. From the
creatures in each player’s board, we select attack, defense,
abilities, and whether the creature can attack this turn (if it
belongs to the active player).

Except for the card type and abilities, all features are already
numeric. We normalize them by dividing each feature by
its maximum absolute value. We apply one-hot encoding to
convert the card type, a categorical feature. We then convert
the remaining binary features by considering true and false
values as 1 and 0. Table I shows the total number of features
in the game state and each of its parts.

TABLE I
NUMBER OF FEATURES IN A GAME STATE AND IN EACH OF ITS PARTS.

Feature group Features
per unit Amount Total

features

Player statistics 4 2 8

Card in hand 16 8 128

Own creature on board 9 6 54

Enemy creature on board 8 6 48

Total 238

V. EXPERIMENTS

Next, we present the setup for our experiments (Section
V-A), the tuning of the hyperparameters of our approach
(Section V-B), and the resulting agents and their performance
(Section V-C).

A. Setup

We used the stable-baselines3 library (version 1.4.0) [20]
to train our agents and the MaskablePPO implementation
of the PPO algorithm present in the auxiliary sb3-contrib
library (version 1.4.0). As a forward model, we used the
gym-locm library (version 1.3.0) [21], which contains an
open-source implementation of LOCM 1.2’s rules exposed
as OpenAI Gym [22] environments, to facilitate the use of
reinforcement learning algorithms. Using the Gym paradigm,
we minimize the agent-game communication overhead present
in the original engine, which is critical for approaches that
require simulation of large amounts of matches (most so far).

We trained the agents for 100,000 episodes in self-play, i.e.,
the opponent agent faced during training is an older version
of the agent itself. We updated the opponent’s network param-
eters to a copy of the agent’s network parameters from time
to time. Following best practices in reinforcement learning
experimenting [23], we stopped training every 2,000 episodes
to save the network’s parameters and evaluate the agent in an
offline manner: the agent faced a fixed set of opponents (so
all network evaluations are comparable) during 500 episodes
each, and we extracted its win rate and other statistics. During
both training and evaluation, both battle agents played with
random decks, and the training agent and their opponent
switched roles (who plays first and second) every episode.

To evaluate, we used two different battle agents. The first,
called max-attack (MA), is one of the baselines in the Strategy
Card Game AI competition. The second, called one-step looka-
head (OSL), is one of the agents used in [24]. MA is a simple
rule-based agent that can play thousands of battles per second
with limited performance, and OSL has greater performance
at the cost of runtime speed. While a state-of-the-art agent
would be ideal, their runtime speed is prohibitive.

We conducted all training sessions on a machine with an
Intel Core i7-8700 3.2GHz processor, 16GB of RAM, and
an NVIDIA GeForce GTX 1050 graphic card with 4GB of
VRAM. We used Python 3.8.10, PyTorch 1.11.0, CUDA 11.4,
and the NVIDIA driver version 470.129.064 in Ubuntu 20.04.
We used 4-core CPU parallelism for battle simulations and the
GPU for neural network operations. The experiments used a
small fraction of the machine’s memory and computing power.
The experiment code and instructions to reproduce them are
available on GitHub.5

B. Hyperparameter Tuning

We used the Bayesian tuning method of Weights & Bi-
ases [25], which uses a Gaussian Process for hyperparameter

5https://github.com/ronaldosvieira/gym-locm/tree/1.3.0/gym locm/
experiments/papers/sbgames-2022

optimization. Our objective function is the win rate versus
OSL. We executed 35 different training sessions, each with
a different set of hyperparameters chosen by the Bayesian
method. Table II lists the hyperparameters we optimized and
their search ranges. The remaining hyperparameters were set
to a reasonable value.

TABLE II
HYPERPARAMETERS OPTIMIZED, THEIR VALUE RANGES AND WHERE

THEY ORIGINATE.

Hyperparameter Value range Origin

Opponent update frequency Every 10, 100, or
1,000 episodes Self-play

Depth of the network 3 to 12 layers
Neural net.

Width of the hidden layers 32 to 512 neurons

Batch size 64, 128, 256, 512,
1024 or 2048 steps

PPO
algorithmAmount of mini-batches Batch size divided by

1, 2, 4, 8, or by itself

Amount of epochs 1 to 24 epochs

Learning rate 1× 10−2 to 1× 10−6

We chose the most promising set of hyperparameters after
evaluating the metrics from the best five and used the following
values to train our final agents: Batch size: 512, minibatch
size: 1, epochs: 1, clip range: 0.2, entropy coefficient: 0.005,
value function coefficient: 1, Num. of hidden layers: 7, Num.
of neurons in hidden layers: 455, activation function of hidden
layers: ReLU, learning rate: approximately 4.114 × 10−3,
opponent network update frequency: every 10 episodes.

C. Results

With the chosen set of hyperparameters, we repeated the
training session five times with different random seeds to
increase the statistical significance of the results. Figures 3 and
4, respectively, show the win rates of the agents during training
in self-play and during evaluation against MA and OSL.

Fig. 3. Win rate of our self-play agents during the 100,000 training episodes,
playing against an earlier version of themselves (self-play). The line represents
the mean, while the (barely visible) shaded area represents the standard
deviation. Every point in the line corresponds to the win rate of all training
episodes since the last update of the opponent’s network parameters.

Fig. 4. Win rate of our self-play agents during evaluation against MA and
OSL across the 100,000 training episodes. The lines represent the mean, while
the shaded areas represent the standard deviation.

The results show that our best agents won approximately
51% and 36% of the battles against the MA and OSL agents.
The best scores in all training sessions against them were
55.8% and 42.6%, respectively. This difference is expected
since OSL is a more powerful agent than MA. Most of the
increase in win rate happens in the first 10,000 episodes, after
which the agents kept increasing but at a lower rate. Results
also show that our agents maintain a win rate of 76% with
little deviation when in self-play. Since we expect the win
rate against a freshly updated opponent to be close to 50%, our
agents seem to learn to outperform their old version quickly.

We also analyzed metrics other than win rate. Taking less
than 2,000 training episodes, our agents converged to make
about 3.6 actions per turn: 44% attack actions, 22% summon
actions, 10% use actions, and 24% pass actions. These percent-
ages are congruent with CCG battles in general, which demand
more combat than board-management actions. A battle lasted
7.25 turns on average against MA and 7.5 turns against OSL.

On average, a training session lasted 1 hour and 27 minutes,
spending approximately half that time evaluating against the
OSL battle agent. A forward pass in the neural network
of a trained agent returns a single action and takes around
two milliseconds, including the time required to calculate
the valid actions and to advance the forward model’s state.
Considering 3.6 actions per turn on average, playing an entire
turn takes around 7.2 milliseconds. This result indicates that
our approach is faster than current state-of-the-art LOCM
agents, which take 40 to 200 milliseconds to act in a battle
turn, depending on the density of the state.

As an additional comparison, we repeated our experiment
twice, training directly against the MA and OSL agents. The
training setup and random seeds were identical, except for the
opponent faced in the training episodes. Figure 5 shows the
win rates of the agents throughout the training against MA and
OSL when evaluated against MA and OSL. The results showed
that the statistics were similar to the self-play experiment,
except that the agents could attain slightly better win rates
especially when evaluating against the same agent they faced
during trained (usually 4-5 percentage points higher).

Fig. 5. Win rate of our non-self-play agents during evaluation against MA
and OSL across the 100,000 training episodes. The lines represent the mean,
while the shaded areas represent the standard deviation. Dashed lines represent
agents trained vs. MA, and solid lines represent agents trained vs. OSL.

VI. DISCUSSION

According to our experiments, our deep reinforcement
learning approach yields fast agents that do not require power-
ful hardware or many days or weeks of computation to train.
Their performance, however, lies considerably below the state-
of-the-art, which would win almost 100% of the battles against
MA (as seen in the Strategy Card Game AI competition).
Below we discuss limitations in our current approach and ways
to tackle them and improve the agents’ performance.

Diverse opponents. Ten episodes seemed enough for our
agents to outperform their self-play opponents during training.
However, their performance during evaluation against MA and
OSL did not increase that fast. Our agents may be in a rock-
paper-scissors-like loop where they can easily beat their earlier
version with a simple change in their strategy and obtain good
rewards without necessarily making progress against other
opponents. Moreover, training against a single fixed opponent
seemed to encourage our agents to overfit their strategy to
that agent. A solution may be to diversify the opponents
seen during training: simultaneously train in self-play (maybe
against many earlier versions) and against other agents.

Permutation-invariance. Our current state and action rep-
resentations are prone to a positional bias: a card in the first
slot of the player’s hand is no more important than a card in the
fifth slot, yet, there are far more states where a card in the first
slot exists than in the fifth slot. Hence, the agent is more likely
to play the first card rather than the fifth regardless of their
relative quality because the agent will see much more samples
with the first card being played than the fifth. Moreover, our
current formulation considers card permutations (e.g., a state
with cards A and B in hand and another with B and A) as
different states, greatly enlarging the state space. A promising
direction may be to incorporate permutation-invariant network
architectures, such as in Set Transformers [26].

Reward shaping. Our current reward model is sparse, i.e.,
most states receive no reward. Thus, the agent is guided only
by whether it wins the battle, disregarding good choices made
during defeats. In reinforcement learning, reward shaping is

a common technique used to speed-up learning by giving
non-zero rewards for performing actions that usually lead to
victory [27]. Possible alternatives for CCGs include rewarding
whenever the opponent loses health or a card on the board.
Adjusting the win-loss rewards by a factor proportional to the
length of the battles may also encourage shorter wins and
lengthier losses.

Deal with the combinatorial action space. Some
approaches in large combinatorial action spaces train multiple
policies: for each ”actionable unit” in the game (in our case,
cards in hand or on the board), there is a policy to select which
action to make (including no-op) and their parameters [28].
This modeling makes training more efficient and mitigates
positional bias but would require multiple forward passes of a
single network to select actions for all cards in hand and on the
board. Other strategies to handle large combinatorial action
spaces we consider is to learn policies over algorithms [29] or
proto-actions [30] instead of actions. Using separate networks
for each action type, like in [9], also reduces the action space.

Dedicated card-encoder network. A significant part of
the game states in CCGs consists of cards. However, our
network architecture currently has no dedicated component
for encoding cards. We expect using a separate card-encoder
network to encode all cards before inputting them to the
primary network to be beneficial, especially when applying our
methodology to commercial CCGs, where natural language
processing will be required.

Tackle hidden information. Our current MDP formulation
disregards the existence of the opponent player, treating his
actions and hidden information as part of the stochasticity
of the problem. We consider tackling these aspects either
explicitly (using a partially observable MDP) or implicitly
(e.g., using a probability model of the hidden information as
part of the game state).

VII. CONCLUSION

In this paper, we proposed a deep reinforcement learning
approach to the problem of battling in collectible card games.
We formulated it as a Markov decision process and used a
variant of the Proximal Policy Optimization algorithm to train
agents in self-play, with Legends of Code and Magic as a
testbed. We evaluated the resulting agents against two existing
battle agents, considering the win rate and other metrics.

While our agents’ performance does not reach the current
state-of-the-art, they act considerably faster, being able to
play many entire battles per second. We analyzed the results,
discussed limitations of the current approach, and pointed out
promising directions to solve them and improve performance.
We intend to tackle some of these directions as future work.

We consider this work a step toward superhuman game-
playing agents for collectible card games, which we under-
stand as one of AI’s current milestones. We hope it encourages
further research on this challenging and promising topic.

REFERENCES

[1] D. Silver et al., “Mastering the game of Go without human knowledge,”
Nature, vol. 550, no. 7676, 2017.

[2] N. Brown and T. Sandholm, “Superhuman AI for multiplayer poker,”
Science, 2019.

[3] C. D. Ward and P. I. Cowling, “Monte Carlo search applied to card
selection in Magic: The Gathering,” in CIG, 2009.

[4] P. I. Cowling, C. D. Ward, and E. J. Powley, “Ensemble determinization
in Monte Carlo tree search for the imperfect information card game
Magic: The Gathering,” IEEE Trans. Comput. Intellig. and AI in Games,
vol. 4, no. 4, 2012.

[5] A. Santos, P. A. Santos, and F. S. Melo, “Monte Carlo tree search
experiments in hearthstone,” in CIG, 2017.

[6] M. Swiechowski, T. Tajmajer, and A. Janusz, “Improving Hearthstone
AI by combining MCTS and supervised learning algorithms,” in CIG,
2018.

[7] H. Chia, T. Yeh, and T. Chiang, “Designing card game strategies with
genetic programming and monte-carlo tree search: A case study of
hearthstone,” in SSCI 2020. IEEE, 2020.

[8] T. Papagiannis, G. Alexandridis, and A. Stafylopatis, “Applying gradient
boosting trees and stochastic leaf evaluation to MCTS on hearthstone,”
in ICMLA 2020. IEEE, 2020.

[9] I. Kachalsky, I. Zakirzyanov, and V. Ulyantsev, “Applying reinforcement
learning and supervised learning techniques to play hearthstone,” in
ICMLA 2017, 2017.

[10] A. Stiegler, K. P. Dahal, J. Maucher, and D. J. Livingstone, “Symbolic
reasoning for hearthstone,” IEEE Trans. Games, vol. 10, no. 2, 2018.

[11] J. Schulman et al., “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017.

[12] J. Kowalski and R. Miernik, “Legends of Code and Magic,” https://
legendsofcodeandmagic.com, 2018, accessed: 2021-12-14.

[13] D. Wang and T. Moh, “Hearthstone AI: Oops to well played,” in ACMSE,
2019.

[14] P. Garcı́a-Sánchez, A. P. Tonda, A. J. F. Leiva, and C. Cotta, “Optimizing
hearthstone agents using an evolutionary algorithm,” Knowl. Based Syst.,
vol. 188, 2020.

[15] C. Browne et al., “A survey of monte carlo tree search methods,” IEEE
Trans. Comput. Intell. AI Games, 2012.

[16] A. Dockhorn, M. Frick, Ü. Akkaya, and R. Kruse, “Predicting opponent
moves for improving hearthstone AI,” in IPMU 2018. Springer, 2018.

[17] A. Janusz, L. Grad, and D. Slezak, “Utilizing hybrid information sources
to learn representations of cards in collectible card video games,” in
ICDM Workshops, 2018.

[18] G. L. Zuin, L. Chaimowicz, and A. Veloso, “Deep learning techniques
for explainable resource scales in collectible card games,” IEEE Trans.
Games, 2022.

[19] S. Huang and S. Ontañón, “A closer look at invalid action masking
in policy gradient algorithms,” CoRR, vol. abs/2006.14171, 2020.
[Online]. Available: https://arxiv.org/abs/2006.14171

[20] A. Raffin et al., “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22, no.
268, pp. 1–8, 2021.

[21] R. Vieira, A. Rocha Tavares, and L. Chaimowicz, “OpenAI Gym
Environments for Legends of Code and Magic,” 10 2020. [Online].
Available: https://github.com/ronaldosvieira/gym-locm

[22] G. Brockman et al., “OpenAI Gym,” CoRR, vol. abs/1606.01540, 2016.
[23] C. Colas, O. Sigaud, and P. Oudeyer, “A hitchhiker’s guide to statistical

comparisons of reinforcement learning algorithms,” in Reproducibility
in Machine Learning, ICLR 2019 Workshop. OpenReview.net, 2019.

[24] J. Kowalski and R. Miernik, “Evolutionary approach to collectible
card game arena deckbuilding using active genes,” arXiv e-prints, p.
arXiv:2001.01326, 2020.

[25] L. Biewald, “Experiment tracking with weights and biases,” 2020.
[Online]. Available: https://www.wandb.com/

[26] J. Lee et al., “Set transformer: A framework for attention-based
permutation-invariant neural networks,” in ICML. PMLR, 2019.

[27] M. J. Mataric, “Reward functions for accelerated learning,” in Machine
Learning, Proceedings of the Eleventh International Conference, 1994.

[28] S. Huang, S. Ontañón, C. Bamford, and L. Grela, “Gym-µrts: Toward
affordable full game real-time strategy games research with deep rein-
forcement learning,” in CoG 2021. IEEE, 2021, pp. 1–8.

[29] A. R. Tavares, S. Anbalagan, L. S. Marcolino, and L. Chaimowicz,
“Algorithms or actions? A study in large-scale reinforcement learning,”
in IJCAI 2018, J. Lang, Ed. ijcai.org, 2018.

[30] Dulac-Arnold et al., “Deep reinforcement learning in large discrete
action spaces,” arXiv preprint arXiv:1512.07679, 2015.

