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Abstract—Collectible card games are played by tens of millions
of players worldwide. Their intricate rules and diverse cards
make them much harder than traditional card games. To win,
players must be proficient in two interdependent tasks: deck
building and battling. In this paper, we present a deep rein-
forcement learning approach for deck building in arena mode –
an understudied game mode present in many collectible card
games. In arena, the players build decks immediately before
battling by drafting one card at a time from randomly presented
candidates. We investigate three variants of the approach and
perform experiments on Legends of Code and Magic, a collectible
card game designed for AI research. Results show that our
learned draft strategies outperform those of the best agents of
the game. Moreover, a participant of the Strategy Card Game AI
competition improves from tenth to fourth place when coupled
with our best draft agent.

Index Terms—collectible card games, deck building, reinforce-
ment learning

I. INTRODUCTION

Collectible card games (CCG), such as Magic: the Gath-
ering and Hearthstone, are adversarial turn-taking two-player
games that are challenging for humans and artificial intelli-
gence (AI) agents alike [1]. In CCGs, players build decks
from a collection of cards and use them to battle against other
players. Cards usually represent creatures, items or spells from
a fantasy world, and their diverse effects frequently interact,
possibly altering the rules of the game in the process. The
set of available cards is updated from time to time, making
the pursuit for the best deck building and battling strategies a
dynamic process. These factors make CCGs much harder than
traditional card games such as bridge or poker. Even so, they
currently hoard tens of millions of players worldwide between
their digital and in paper versions, forming a powerful industry.

Deckbuilding requires strategic reasoning to anticipate up-
coming opponents and find effective card interactions, while
battling requires reasoning in large state and action spaces to
account for the many possibilities of combined card effects.
In face of such challenges, the recent advances in game AI
that achieved superhuman performance in many games [2]–
[4], have not reached CCGs yet.

Game balancing is one of the toughest challenges CCG
designers face. Although they conduct careful qualitative
playtesting processes before releasing new cards [5], banning
freshly-released cards due to them causing unforeseen imbal-
ances in the game is a fairly common event. Fast and strong

deck building and battling agents could provide more chal-
lenging adversaries for human players and also enable more
thorough playtesting [6], [7], helping to detect unbalanced card
interactions before they are made available to the public.

In this paper, we present a deep reinforcement learning
(DRL) approach to create strong and fast deck building agents
for CCGs in the arena mode. Differently from most game
modes, where a large card pool is available for the players
to build decks in an offline manner, arena mode requires the
player to build a deck before every set of matches, drafting
one card at a time from few randomly presented candidates.
Hereafter, we refer to deck building in arena mode as drafting.

We model drafting in CCGs as a Markov decision process,
and train drafting agents with a DRL algorithm. We evaluate
three variants of our approach that differ on how to handle
information from previously drafted cards. The performance
of the resulting drafters are measured according to the win rate
of a battle agent in matches using the respective drafted decks.

We instantiate our approach in Legends of Code and Magic
(LOCM) [8], a collectible card game designed for game AI
research, and reimplement the game engine following the Ope-
nAI Gym [9] interface to facilitate the use of reinforcement
learning algorithms on the game. Our resulting draft agents
significantly outperformed those of the best LOCM-playing
agents. Moreover, we show that a participant of the Strategy
Card Game AI competition, held at the IEEE CoG 2019
conference, improves from the tenth to the fourth place when
using our best drafting agent.

Our main contributions are summarized as follows: (i) a
game-agnostic deep reinforcement learning methodology for
finding drafting strategies in arena mode of CCGs; (ii) a
full-fledged implementation of LOCM’s rules as OpenAI Gym
environments to train reinforcement learning draft and battle
agents; and (iii) a collection of competitive drafting strategies
for LOCM.

II. RELATED WORK

Deck building in all game modes of CCGs is dominated by
evolutionary approaches. In those, each individual represents
a fixed-length deck, with each of its genes serving as a card
slot. Fitness is based on either the win rate [10]–[12] or
the health difference [13] of a fixed battle agent using the
respective deck either in an round-robin tournament with the



entire population or against a selection of established decks.
In a notable variation, the algorithm evolves high-performance
decks while also ensuring diversity among them, preventing
the common outcome of evolutionary algorithms of converging
to a single deck archetype [14].

A machine learning approach has also been proposed, which
trains neural networks via reinforcement learning to recom-
mend card replacements in a deck. Competitive decks can
then be found by sequentially replacing cards until all original
cards have been replaced [15]. A different approach aims to
find creative card combos rather than building a full deck [16].

Given a card pool, the aforementioned deck-building ap-
proaches search the space of all possible decks looking for
well-performing decks. For the arena mode, however, since
the space of possible decks is not known beforehand, such
approaches are not suitable. Instead, work on arena mode
should focus on finding a more general solution, that is, a
draft strategy. A single work so far tackles the arena mode.
An evolutionary algorithm is used, where each individual
represents a ranking of cards instead of a deck. The resulting
draft strategy is to choose the highest ranked card on each
draft round. The genetic operators are modified to act only on
genes whose respective cards appeared in at least one match in
the fitness calculation, as these cards are the ones responsible
for the resulting fitness [17].

Other unpublished work on arena drafting involve either
finding rankings of cards by analysis of thousands of match
replays, picking cards to pursue an optimal distribution of
resource costs or a combination of both [18]. The Hearth
Arena website1 provides an arena draft helper, guiding human
players to draft cards according to card rankings and synergy
lists maintained by the Hearthstone community.

We aim to investigate whether deep reinforcement learning
algorithms can produce competitive decks, following their pre-
vious successes in other domains. We propose approaches that
consider synergies with previously drafted cards when picking
a new card, which, to the best of our knowledge, no work has
explicitly considered so far. Moreover, our approaches operate
using card features rather than their IDs, learning what a good
card is like instead of which cards are good.

III. METHODOLOGY

Our methodology consists in formulating the problem of
drafting in CCGs as a game-agnostic Markov decision process
(Sect. III-A), and tackling it with deep reinforcement learning,
following one of our three approach variants (Sect. III-B).

A. Problem formulation

Let C be the set of all available cards of the CCG. We
consider a generic draft in arena mode, where the player builds
its deck incrementally in n turns. At each turn, the player picks
one among k cards randomly sampled from C. The player
does not know which cards will appear in the future, and, in
addition, we assume that the player does not know the cards

1https://www.heartharena.com

presented to or picked by their opponents. At the end of n
draft rounds, the n-card deck is used in set of battles, which
assess its performance.

To apply reinforcement learning, we formulate the drafting
problem as a Markov decision process (MDP), whose elements
(S,A, T,R, γ) are defined next:

• The set of states S represents all the possible turns
in the draft. We define two different forms of state
representation. A Markovian state representation, denoted
S1, includes all previously chosen cards by the player
as well as the current k cards to choose. Under this
representation, the resulting set of states is large: at turn
t the agent has already picked t−1 cards in the previous
turns, yielding |C|t−1 possible combinations, and has(|C|

k

)
possible combinations for the current choice. Con-

sidering n turns, the cardinality of S1 is
∏n

t=1

(|C|
k

)
|C|t−1.

A simpler non-Markovian state representation, denoted
S2, considers only the current card choices, disregarding
the past picks. Thus, |S2| =

(|C|
k

)
. This representation

yields a much smaller state space at the cost of disre-
garding possible synergies with previously picked cards.
We use these two state representations in our approaches.

• The set of actions A at any turn consists in choosing one
of the k presented cards. Formally, A = {1, ..., k}.

• The transition function T (s′|s, a) is such that, in s′, a new
sample of k cards is presented if s was not the last draft
round (less than n draft rounds have passed). If S1 is be-
ing used, s′ also contains the t−1 previously picked cards.

• The reward function R(s) returns 0 for all non-terminal
states and, for terminal states, the result of a battle using
the built deck: +1, 0 or −1 for victory, draw or loss of
the companion battle agent, respectively. We assume a
single battle, but a set of battles could also be considered,
and the reward would be averaged over these.

• The discount factor γ is set to 1 (i.e. no discounting is
made), as earlier or later choices of cards have the same
influence on winning or losing the battle.

Fig. 1 depicts a sequence of states, actions and rewards
of a sample episode in this formulation with k = 3 choices
per each of n = 30 draft turns. Our goal is to find a policy
π : S×A → [0, 1] that maps a state to a probability distribution
over actions in a way that maximizes the expected reward (i.e.
the battle agent’s win rate). Our resulting draft agent then uses
this policy to pick a card in each draft turn.

B. Proposed draft agents

We tackle the arena drafting MDP with deep reinforcement
learning. In each draft turn, the game state is converted to
a network-friendly numeric representation that follows either
S1 or S2 (as defined in Section III-A). This representation
contains the relevant features of all current card choices (and
previously picked cards for S1), normalized to the range
[−1, 1]. Empty card slots (i.e. cards not yet picked) are
represented by a zero vector. The representation is then given
to the network, which outputs the index of its chosen card.



choose	1st choose	3rd ... choose	2nd

s0 a0
s1

r1	=	0
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Turn	1 Turn	2 Turn	30 End	of	battle
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...10

10 32 105

... 153...10 80

s2
r2	=	0

Turn	3

54 147 117

...10

72 153 37

...10 8080

Fig. 1. A sample episode in the MDP that uses the S1 state representation in a draft phase with n = 30 turns. Each numbered rectangle represents a different
card in the game. Each state holds all previously picked cards plus k = 3 choices of cards. Actions correspond to picking one of the cards. A reward is given
at the terminal state representing, in this case, that the companion battle agent has won.

We propose three approach variants that differ in state
representation and the type of neural network used by the
DRL algorithm. The first variant, History, uses S1 and a multi-
layer perceptron (MLP) architecture. As discussed above, S1
encodes all previously picked cards into the state representa-
tion, enabling the agent to consider synergies with them when
choosing a next card. The second variant, LSTM, uses S2
but rely on a layer of long short-term memory (LSTM) [19]
units to retain information about past picks without explicitly
enumerating them. The last variant, Immediate, uses S2 and
a MLP architecture, not considering past picks.

IV. EXPERIMENTS

We present our testbed (Sect. IV-A), training setup (Sect.
IV-B), feature extraction process (Sect. IV-C), tuning of
hyperparameters and network architecture (Sect. IV-D), and
comparative results of our draft approaches among themselves
(Sect. IV-E) and with other drafters in the literature (Sect.
IV-F). Lastly, we show the improvement of an agent in the
Strategy Card Game AI competition when using our best
drafter (Sect. IV-G).

A. Testbed

We instantiated our drafting reinforcement learning ap-
proach in Legends of Code and Magic (LOCM), a two-player
digital collectible card game designed for AI research [8].
Its rules are a subset of those of the popular The Elder
Scrolls: Legends, and deck building is performed exclusively
in an arena-like fashion, making it a good testbed for our
experiments.

A match of LOCM consists of two phases: draft and battle.
In the draft phase, for n = 30 turns, players pick one out
of k = 3 randomly presented cards to form a deck. Both
players are presented the same cards but they cannot observe
the choices of each other. In the battle phase, players take turns
placing creatures in the field, using them to attack the opposing
player and their creatures, as well as using item cards, with
the objective of reducing their adversary’s health points to
zero. LOCM is currently used in the Strategy Card Game AI
competition, hosted by IEEE CoG and IEEE CEC conferences.

To speed-up experiments and facilitate further research on
LOCM, we developed an open-source re-implementation of
the game engine. We used it to build reinforcement learning

environments that follow the OpenAI Gym interface, repre-
senting the draft phase, the battle phase and the full game, in
one-player and two-player variations. The game engine, envi-
ronments, experiment code, resulting draft agents and hyper-
parameters described in this paper are available on GitHub2.

B. Setup

In LOCM, the drafted decks are used in a single battle
and, since there is a known advantage of playing first in
battles [18], the literature leverage this by using separate draft
strategies according to whether they will battle as the first
or second player. Thus, we trained two separate instances
of the deep reinforcement learning algorithm specialized at,
respectively, drafting for the first and second players. Each
network plays against an earlier version of the other for a
determined number of episodes, from which we update both
earlier versions with the respective newest version and repeat
until the total amount of training episodes is reached. This self-
play variant is frequently used when the agents being trained
are in asymmetric roles [20].

We trained our drafters partnered with two different battle
agents. The first is max-attack, one of the baselines in
previous LOCM-based AI competitions. It does all actions it
can using the cards with the greatest attack power first. The
second is a greedy agent [17], which picks the best action
according to a heuristic state evaluation over resulting states
of a one-step lookahead.

We chose the Proximal Policy Optimization (PPO) algo-
rithm [21] to train our drafters, after preliminary experiments
with other deep reinforcement learning algorithms of the
stable-baselines [22] package. PPO uses neural networks to
parameterize the policy and an estimate of the value function,
which gives the expected future rewards. Each training session
consists of 30 thousand self-play episodes of the respective
agent, namely History, Immediate or LSTM (see Section
III-B), evaluating the drafter in twelve checkpoints during
the training session. Each evaluation consists in playing a
thousand matches and recording the agent’s win rate. To set a
common ground between all evaluations, the adversary always
uses max-attack’s draft strategy, which chooses the card with
greatest attack power.

2https://github.com/ronaldosvieira/gym-locm



The amount of episodes of training and evaluation were
determined empirically, minding a balance of the training time
and the quality of the resulting strategy. On average, a training
session lasts 30 minutes with the max-attack battler, and 3
hours with the greedy battler. Yet, the use of a trained drafter
in a draft turn takes no more than one millisecond.

C. Feature extraction

LOCM cards have fifteen attributes. Among these, we select
the card type, cost, attack, defense, abilities and health and
card draw modifiers, leaving out the card ID number and name,
as they do not affect the quality of a card.

With the exception of the card type and abilities, all features
are already numeric. We just normalize them by dividing
each of these features by their maximum absolute value.
To convert the categorical card type, a categorical feature,
we apply one-hot encoding. We then convert the resulting
binary card type features as well as the six binary ability
features (breakthrough, charge, drain, guard, lethal and ward)
by considering true and false values as 1 and 0, respectively.
This is done on all cards in the game state, and the resulting
vectors are concatenated to form the network’s input.

D. Hyperparameter tuning

To find the ideal network architecture and hyperparameters
for PPO, we used the Tree of Parzen Estimators (TPE)
optimization algorithm [23], through the hyperopt package3.
We ran 50 iterations of the TPE algorithm for each of the six
combinations between draft approaches (Immediate, History
and LSTM) and battle agents (max-attack and greedy). In each
iteration, a training session is conducted using a specific set
of hyperparameters. The highest win rate obtained across the
twelve checkpoints is returned to TPE, which selects the set
of hyperparameters to be tried next, so as to reduce the un-
certainty over promising regions of the hyperparameter space.

The hyperparameters tuned for the PPO algorithm were the
learning rate, batch size, how many mini-batches are formed
from the batch and for how many epochs these mini-batches
are used to train, the clip range of the loss function as well as
the coefficients of its value function and entropy terms. More-
over, we also optimized the number of hidden layers in the
networks (from one to three; in the LSTM approach, the first
layer always uses LSTM units), the number of neurons in these
layers (from 24 to 256), the activation function (TanH, ReLU
or ELU) and the frequency to update the opposing network’s
parameters in self-play (every 30, 300 or 3000 episodes).

We detected some patterns in the best sets of hyperparam-
eters returned by TPE. As a general trend, larger batch sizes
(close to 300) and smaller learning rates (around 10−4) were
preferred. Most configurations ended up with shallow 1-layer
networks, with the rest settling with 3 layers but less neurons
on each layer.

A more evident pattern was that configurations using the
max-attack battler had an average of 87 neurons in the

3https://github.com/hyperopt/hyperopt

network, while those using greedy had an average of 171
neurons. It may be due to the more elaborate battle strategies
of the greedy agent, requiring more sophisticated decisions
by the networks. Also, the updates of the opponent network
were more frequent in max-attack configurations (every 336
episodes, on average) than in greedy configurations (every 850
episodes, on average). This possibly means that more training
episodes are required for the drafter to learn to defeat their
opponent during self-play in the latter scenario.

The full sets of hyperparameters found for each configura-
tion can be found at the Appendix.

E. Comparison between draft approaches

In our first experiment, we compared the performance of
our three approaches: Immediate, History and LSTM (see
Section III-B). Ten training sessions with different random
seeds were conducted for each combination of draft approach
and battler, using their best network architecture and set of
hyperparameters found.

The win rates obtained in each checkpoint were compiled
into learning curves, where the drafter’s performance and
speed of convergence can be observed. Fig. 2 shows the mean
learning curves of each approach paired with each battle agent.
The first and second player networks are compared separately
and averaged at the right-hand side.

The results show a better performance by the Immediate
approach in all scenarios, followed by LSTM. Although
History achieves better performance than LSTM early in
the training, it also seem to settle earlier, while the latter
continues to improve. This suggests that, for a training session
of 30 thousand episodes, the simplicity of a much smaller
state space outperforms the ability of History and LSTM to
make decisions considering previously chosen cards. Another
hypotheses are that the companion battle agents might not
be able to leverage card synergies or that LOCM’s cards and
rules may be too simple to enable the emergence of relevant
synergies or deck archetypes.

Fig. 2 also shows the known advantage of playing first in
LOCM (Sect. IV-B), as first players invariably obtained higher
win rates than second players. Furthermore, at the end of train-
ing, most of the learning curves (especially those of LSTM)
still display an increasing trend, meaning that better strategies
could probably be achieved by longer training sessions.

F. Comparison with other draft agents

In our second experiment, we evaluated our resulting
drafters against draft strategies of different complexities. The
first and simplest one is a random draft. The second strategy
is max-attack, which chooses the card with greatest attack
power. The last three, named coac, closet-ai and icebox, are
draft strategies from the best submissions of past LOCM-based
competitions, which draft according to previously calculated
card rankings.

We measured the win rates of the selected drafters in ten sets
of a thousand battles against an adversary that uses the max-
attack drafter. Since our goal is to find the best performing



Fig. 2. Learning curves of History, Immediate and LSTM drafters. Left and middle plots show the performance of the networks specialized at drafting for
the first and second players, respectively, whereas the right plot shows their average. Plots in the top row are trained and evaluated using the max-attack battle
strategy, while those in the bottom row use the greedy battler. Solid lines and shaded area are the mean and standard deviation of the win rate, respectively.

draft strategies, our agents were represented by the best policy
obtained in each of their ten training sessions. Fig. 3 shows the
mean win rate and standard deviations of each draft strategy
partnered with either max-attack or greedy battlers.

Our approaches outperform all tested draft agents using
either battler. As in the previous experiment, the Immediate
approach achieved the best win rates, followed by LSTM and
History. We performed paired t-tests to verify the significance
of the difference in performance among our three approaches
and the best performing competing drafter (icebox and coac,
when using the max-attack and greedy battlers, respectively).
We found all differences to be significant with p < 0.005,
except the one between the performance of History and coac
when drafting for second players and partnered with the greedy
battle agent, with a p-value of 0.076. In that case, we attested
a significant difference between the performance of History
and the second best performing competing drafter, icebox.

Since the draft agents in the literature were created to work
with a specific battle agent, the ideal experiment setting would
involve training our approaches with each of these battlers in
order to compare. However, the computational cost of such
task is prohibitive. It is important to mention that current deck-
building approaches on the literature also have this issue, and
resorted either on experiment settings similar to ours [17] or
very limited/no comparative experiments [10], [13], [15].

Nevertheless, when using the max-attack battler, our trained
networks can win up to 83.5% of the matches on average

against the original max-attack drafter – evidence that our
approaches can find better draft strategies.

G. Agent improvement in the CoG 2019 LOCM tournament

As a comparative way to measure the performance of our
best draft strategy, we re-executed the matches of the Strategy
Card Game AI (SCGAI) competition held at IEEE CoG 2019,
modifying the full max-attack agent, which was part of the
tournament, to use our best draft strategy, namely, Immediate
(see Sect. IV-E). The competition gathers the state-of-the-art
of LOCM-playing agents in a round-robin tournament, and is,
therefore, a good scenario to evaluate our draft strategies.

The source-code of the agents and of the tournament
itself are available on GitHub4. We used them to run the
tournament twice (with the original and enhanced agent) with
approximately 3000 matches between every combination of
agents, yielding a total amount of approximately 350 thousand
matches per tournament. Fig. 4 shows the agents’ ranking and
win rates in the original and modified competitions.5

With the aid of our best drafter (Immediate), the max-attack
agent improved its position from the tenth to the fourth place,
winning 46.1% of the matches instead of the previous 34%.

4See https://jakubkowalski.tech/Projects/LOCM/COG19
5The results from our reenacted competition are slightly different from the

original ones from SCGAI 2019, probably due to hardware characteristics. The
most notable difference is the drop in performance of the Marasbot agent,
that achieved third place in the original competition.



Fig. 3. Performance of the our best drafters plus the current draft strategies in literature, when paired with the max-attack (graph in the left) and greedy
(graph in the right) battle agents. The filled and hatched bars on each agent represent its win rate by drafting for the first and second player, respectively.
Error bars show the standard deviations. All win rates were measured by performing ten sets of a thousand battles against a fixed opponent that uses the
max-attack draft strategy.

1º   Coac (90.3%)

2º   Prophet Coac (88.7%)

3º   UJIAgent2 (57.3%)

4º   AntiSquid (47.4%)

5º   Fabbiamo (43.6%)

6º   Marasbot (43.1%)

7º   UJIAgent3 (42.3%)

8º   UJIAgent1 (41.3%)

9º   Conrisc (39.3%)

10º max-attack (34.0%)

11º Baseline1 (22.7%)

1º   Coac (89.2%)

2º   Prophet Coac (87.4%)
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7º   UJIAgent1 (43.4%)

10º Conrisc (35.7%)

4º   max-attack (46.1%)

11º Baseline1 (20.9%)

Before substitution After substitution

Fig. 4. Tournaments with agents from the IEEE CoG 2019 Strategy Card
Game AI competition before and after substitution of the max-attack agent.

Although only trained against a single opponent, our draft
strategy was able to increase max-attack’s individual win rate
against the majority of the opponents in the tournament. In
some cases, however, the opponent agents performed better
against the modified max-attack than against its original ver-
sion, showing some degree of non-transitivity in the game –
what works well against some opponents may be ineffective
against others.

V. DISCUSSION

According to our experiments, our reinforcement learning
drafting agents, when partnered with the same battle agents
they were trained with, outperformed all other selected drafters
(Fig. 3). They also improved the ranking of the max-attack
agent in the reenacted CoG 2019 LOCM tournament (Fig.
4). Our drafting agents learn from their own choices, without
domain knowledge or labeled data, and their decision process
is fast, as it does not involve lookahead searches.

A direct improvement on our experiment methodology is to
use a reward model that reflects the average win rate against
a pool of diverse opponents, instead of just one. This might
result in more robust drafters, since they will train in a more
accurate representation of the scenario they will be used. On
the other hand, the computational cost of each training session
would increase.

Another hypothesis on generating more flexible drafters is
to explicitly account for different playing styles, using ad-
hoc teamworking methods [24], where an agent must adapt
to previously unseen partners. For example, the drafter could
be coupled with different battlers during training, but in
addition to the match result, the agent would observe the
match execution. This would allow the drafter to infer the
playing style of the battler using, for example, player modeling
approaches [25]–[27]. The different playing styles of battlers
could be mapped to specific deck-building policies.

The surprising result of our experiments is that the Immedi-
ate agent, which disregards previously picked cards, achieved
the best overall performance. As previously discussed, this
suggests that a greater amount of training episodes may be
needed for History and LSTM to exploit their ability of
considering card synergies. It can also be explained by the fact
that our drafters trained with simple battle partners, that may
not be advanced enough to exploit combined card effects. The
more sophisticated battlers in the literature, that could leverage
card combinations, are based on tree-search techniques [28],
[29], which unfortunately would slow training considerably.

A possible solution would be to train a reinforcement
learning battler as well. With no search involved, it would
produce quick responses and enable fast training of drafting
strategies. However, training two interfering policies (draft and
battle) simultaneously is not trivial: the drafter must learn to
generate decks according to an ever-changing playing style,
while the battler must learn to play with decks coming from an



unstable distribution of decks. Fixing one agent while training
the other, and swapping them from time to time could be a
possible solution.

VI. CONCLUSION

This paper tackles deck building in arena mode of col-
lectible card games (CCG), where players draft their deck one
card at a time from a set of randomly presented candidates. We
modeled it as a reinforcement learning problem and presented
three approaches to build draft agents with different ways of
considering the previous choices. The performance of a drafter
is proportional to the victories of a fixed battle agent that uses
their built decks.

We use Legends of Code and Magic, a CCG designed for
AI research, as a testbed to evaluate our methodology. Our
draft policies, trained in self-play, outperformed all competing
drafters, including the ones used by top agents in LOCM-based
competitions, when coupled with two different battle agents.
Moreover, our draft improved the ranking of an agent in the
reenacted Strategy Card Game AI competition.

The discovery of strong drafting policies is a step towards
competent AI for CCGs. Once trained, approaches based on
reinforcement learning are fast, as they do not need to perform
computationally expensive lookahead searches. The benefits
of fast and strong CCG players result not only in more
challenging opponents for humans, but also contribute to game
balancing – one of the toughest challenges CCG designers face
– by allowing efficient playtest of new rules or cards. Previous
drafting approaches usually build card rankings, requiring re-
training to handle new cards. In contrast, our drafters observe
card attributes, thus not being tightly tied to the specific card
set seen on training. Future studies will aim the construction
of a reinforcement learning battler, as well as the use of the
presented methodology on more complex commercial CCGs.
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APPENDIX
HYPERPARAMETERS

Table I lists the hyperparameters we optimized, as well
as their value ranges and origin. We chose the value ranges
empirically and based on previous knowledge about neural
networks and the Proximal Policy Optimization algorithm.
Tables II and III show the best sets of hyperparameters found
to train each approach with the max-attack and greedy battle
agents, respectively.



Hyperparameter Value range Origin
Update frequency of the opponent network Every 10, 100 or 1000 episodes Self-play
Depth of the network 1 to 3 layers

Network architectureSize of the hidden layers 24 to 256 neurons
Activation function of neurons in hidden layers TanH, ReLU or ELU
Batch size 30 to 300 steps

PPO Algorithm

Amount of mini-batches 1 to 300
Amount of epochs to train with each batch 3 to 20 epochs
Clipping range of the loss function 0.1, 0.2 or 0.3
Weight of the value function in the loss function 0.5 or 1.0
Weight of the entropy term in the loss function [0, 0.01]

Learning rate [1× 10−2, 5× 10−5]

TABLE I
HYPERPARAMETERS OPTIMIZED IN OUR METHODOLOGY, THEIR VALUE RANGES AND WHERE THEY ORIGINATE. THE AMOUNT OF MINI-BATCHES WERE

FIXED AT 1 IN ALL LSTM APPROACHES, DUE TO IMPLEMENTATION CONSTRAINTS.

Hyperparameter Immediate History LSTM
1st player 2nd player Both players 1st player 2nd player

Update frequency Every 10 ep. Every 10 ep. Every 100 ep. Every 100 ep. Every 100 ep.
Depth of the network 3 layers 1 layer 1 layer 3 layers 1 layer
Size of the hidden layers 52 neurons 81 neurons 93 neurons 25 neurons 24 neurons
Activation function ELU TanH TanH TanH TanH
Batch size 300 steps 300 steps 240 steps 240 steps 150 steps
Amount of mini-batches 100 150 120 1 1
Amount of epochs 3 epochs 8 epochs 3 epochs 17 epochs 10 epochs
Clipping range 0.1 0.1 0.3 0.1 0.1

Weight of the value function 0.5 0.5 0.5 1.0 0.5

Weight of the entropy term 8.48× 10−3 6.34× 10−3 6.59× 10−3 2.06× 10−3 5.39× 10−3

Learning rate 1.38× 10−4 1.62× 10−4 3.68× 10−4 4.57× 10−4 4.01× 10−4

TABLE II
BEST SETS OF HYPERPARAMETERS FOUND FOR EACH OF OUR APPROACHES WHEN PAIRED WITH THE max-attack BATTLER.

Hyperparameter Immediate History LSTM
1st player 2nd player 1st player 2nd player Both players

Update frequency Every 1000 ep. Every 1000 ep. Every 100 ep. Every 1000 ep. Every 1000 ep.
Depth of the network 1 layer 1 layer 1 layer 1 layer 3 layers
Size of the hidden layers 169 neurons 154 neurons 199 neurons 199 neurons 51 neurons
Activation function ELU TanH ELU ELU TanH
Batch size 270 steps 270 steps 270 steps 270 steps 210 steps
Amount of mini-batches 135 135 135 135 1
Amount of epochs 20 epochs 5 epochs 4 epochs 18 epochs 16 epochs
Clipping range 0.1 0.1 0.3 0.1 0.1

Weight of the value function 1.0 0.5 1.0 1.0 1.0

Weight of the entropy term 5.95× 10−3 7.93× 10−3 7.23× 10−3 4.36× 10−3 8.55× 10−3

Learning rate 2.28× 10−4 1.74× 10−4 6.16× 10−5 5× 10−5 1.11× 10−4

TABLE III
BEST SETS OF HYPERPARAMETERS FOUND FOR EACH OF OUR APPROACHES WHEN PAIRED WITH THE greedy BATTLER.


