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1 Motivation
In the recent years, games such as Go and poker
have been played at superhuman level, but perfor-
mance in collectible card games remain limited.

Can we play well a collectible card game
with a pure reinforcement learning ap-
proach?

2 Legends of Code and Magic
Legends of Code and Magic (LOCM) is a two-
player digital collectible card game in the likes
of the popular Hearthstone, except with simpler
rules and designed specifically for research.

A match of LOCM has two phases:

• In the draft phase, the players build their decks
by choosing a card between three random cards
presented by the game, 30 times.

• In the battle phase, the players take turns play-
ing cards from their hands and attacking their
opponent until one of them has zero or fewer
health points.

3 Methodology
In our initial plan, each phase will be played by
a dedicated (deep) neural network that learns
by self-play with a state-of-the-art reinforce-
ment learning algorithm, using the match re-
sult (win or loss) as reward signal.
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Figure 1: Expected input/output for the draft neural network.
It takes the attributes of the cards and outputs the
chosen card.
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Figure 2: Expected input/output for the battle neural network.
It takes the players’ stats and attributes of the cards in
hand and in the board and outputs the chosen action.

4 Preliminary & Expected Results
• To facilitate further research on LOCM, we
reimplemented the game engine and de-
veloped draft-only, battle-only and full game
OpenAI Gym environments.

• We studied the influence of each game phase
on the outcome of a match, and confirmed
that the strategies used on the draft
and battle phases are interdependent and
both contribute significantly to a win.
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Figure 3: Win rate of strategies against a baseline (random
draft and random battle).

• We plan to evaluate our approaches for both
phases individually and jointly against state-of-
the-art strategies, with win rate as main metric.

• By training both draft and battle models simul-
taneously, we expect them to optimize them-
selves for one another and perform better
than the best LOCM agents currently.

5 Conclusion
With this work, we expect to show that pure re-
inforcement learning approaches are viable in the
domain of collectible card games.

6 Future Work
Some future work ideas include:

• Addressing the uncertainty in the game by, for
example, modeling it as an partially observable
Markov decision process (POMDP).

• Porting this methodology to a more complex
collectible card game.

• Studying the synergy between different draft
and battle strategies.

• Using the battle phase network as a tree policy
for a Monte Carlo tree search method.
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