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Abstract

Collectible card games (CCGs) are widely-played games in which players build a deck from a set of
custom cards and use it to battle each other. They are notoriously more challenging than games such
as Go and Texas Hold’em Poker, the protagonists of recent breakthroughs in game-playing AI. Deep
reinforcement learning approaches have recently become state-of-the-art in CCGs, although requiring
huge amounts of computational power to train. In this paper, we propose a collection of deep reinforce-
ment learning approaches to battling in CCGs that are trainable on a single desktop computer. Each
approach tries different mechanisms to increase sample efficiency. We use Legends of Code and Magic,
a CCG designed for AI research, as a testbed and compare our approaches to each other, considering
their win rate and other metrics. Then, we discuss the position of our approaches regarding the current
literature, their limitations, directions of improvement, and extension to commercial CCGs.

Keywords: reinforcement learning, collectible card games

1. Introduction

In collectible card games (CCGs), such as
Magic: the Gathering or Hearthstone, players
build a deck from a broad set of cards represent-
ing creatures and spells and use it to battle other
players. From an AI standpoint, CCG battles are
turn-based, two-player games containing hidden
information, non-determinism, large combinato-
rial state and action spaces, and rules that may
change throughout the game. These factors make
them a more challenging domain than games like
Go and Texas Hold’em Poker, the protagonists of
recent breakthroughs in game-playing AI (Silver
et al., 2017; Brown and Sandholm, 2019).
Fast human-level AI battlers for CCGs would

enable better playtesting tools and help CCG de-
signers in the difficult task of game balancing.
They would also provide challenging opponents
for human players. Recently, Deep Reinforce-
ment Learning (DRL) approaches have become
state-of-the-art in some CCGs (Xi et al., 2023;

Xiao et al., 2023). Their performance and run-
time speed are better than previous tree-search
approaches, which is a step towards enabling their
use in playtesting and game-balancing tools for
CCG designers. This would help mitigate a crit-
ical long-standing problem in commercial CCGs:
the banning or nerfing of cards just after their
release due to unforeseen imbalances.

However, the current DRL approaches require
huge amounts of computational power to train,
making their reproduction and extension diffi-
cult. While DRL is notoriously sample-inefficient,
many efforts have been employed to improve in
this direction: reward shaping (Mataric, 1994)
and other techniques that tweak aspects of the
training process, sample generation, and neural
network architecture, for instance, are suggested
to achieve greater performance with a lesser com-
putational budget (Yu, 2018).

We propose a deep reinforcement learning ap-
proach for battles in collectible card games and
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investigate alternative approaches to improve its
performance. To do so, we formulate battling as
a Markov decision process and train deep neural
networks with a variant of the Proximal Policy
Optimization algorithm (PPO) (Schulman et al.,
2017) to solve it. The resulting agents receive a
representation of the game state as input, process
it on a multilayer perceptron, and output a single
action to be performed in-game. Without using
search, the agents can play many battles per sec-
ond.

We use Legends of Code and Magic 1.5 (LOCM)
as a testbed. LOCM is a simple, finite, and deter-
ministic CCG designed especially for AI research.
We evaluate our resulting agents in battles against
a fixed battle agent from the literature. We con-
duct a hyperparameter tuning and compare the
base and alternative approaches, realizing that
they unexpectedly achieve similar win rates. We
then discuss the results, the current limitations
of our approaches, and also the additional chal-
lenges of adapting this methodology to a com-
mercial CCG.

Our main contribution is a collection of DRL
approaches to the battling problem in CCGs that
is trainable on a single desktop computer with a
modest configuration, including variants with dif-
ferent reward functions, state representation, and
training opponents. Secondary contributions are
(i) an analysis and discussion of factors that may
have restrained the agents’ performance, point-
ing future research directions; (ii) a review of the
main challenges of adapting this methodology to
commercial CCGs; and (iii) reproducible experi-
ments using exclusively open-source libraries.

This paper extends our previous work (Vieira
et al., 2022) by using the 1.5 version of LOCM,
released in 2022, which substantially changes the
deck-building process, introduces a new card at-
tribute, and moves from having a fixed card pool
to procedurally generating cards for each match.
We also explore some of the alternative method-
ologies we suggested in the previous work and in-
vestigate whether they improve our results. Fur-
thermore, we include a section discussing the use
of our methodology in more complex commercial
CCGs. Finally, we consider the new state-of-the-

art of game-playing AI for collectible card game
battles and its differences and implications for our
research.
The following sections are organized as follows:

In Section 2, we explain LOCM’s rules and its
position among other CCGs. After, in Section 3,
we describe related work on CCGs, especially for
battling. Section 4 presents our methodology: the
Markov decision process formulation and our base
and alternative approaches. Then, in Section 5,
we present our experiments, where we compare
all our approaches. Section 6 brings a discussion
of our results and the position of our approaches
in the literature. Lastly, Section 7 concludes the
paper.

2. Legends of Code and Magic

We instantiate our approach on Legends of
Code and Magic (LOCM) version 1.5. LOCM
has two main types of cards: creatures and
items. Creature cards are used to attack the
opponent creatures or the opponent player, while
item cards are used to apply varied effects, such
as increasing a creature’s attack attribute or
removing all of its abilities. Figure 1 shows a
creature card in LOCM.

Area
modifier

Figure 1: An example of a LOCM 1.5 creature card and
its features.

LOCM 1.5 matches consist of two phases: the
constructed (or deck-building) phase and the bat-
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tle phase. In the constructed phase, the game
generates 120 cards procedurally, from which both
players should build a deck of 30 cards, having up
to two copies of the same card. In the end, the
decks are shuffled, and the battle begins.
In a battle, each player starts with 30 health

points and one mana point, which is recharged
and increased by one each turn (up to a maxi-
mum of 12). They also start with four cards in
their hand (drawn from their shuffled deck) and
draw one more each turn. The second player gets
an additional card and a non-rechargeable mana
point at their first turn. The battle ends when
a player reaches zero or fewer health points, and
their opponent wins. The players take turns in
which they can:

• Summon a creature: spend mana equiva-
lent to a creature card’s cost to place it on
the board. The player must choose which of
the two lanes to place the creature.

• Use an item: spend mana equivalent to an
item card’s cost to apply the item’s effects to
a target. The target may be any creature on
the board or the opponent player.

• Attack with a creature: select one of their
creatures on the board to deal damage equiv-
alent to that creature’s attack attribute to
a target. The target may be the opponent
player or any opponent creature on the same
lane as the attacking creature. Damage on
creatures reduces their defense attribute (any
creature with 0 or fewer defense points is
removed from the board), while damage on
players reduces their health points. Crea-
tures can attack once per turn and cannot
attack the turn they were summoned.

• Pass the turn.

While LOCM’s rules are simpler than those
of commercial CCGs, they still represent the
essential characteristics of the genre: drawing
cards from a custom deck, using mana to play
cards, having creature and spell/item cards with
different abilities, and combat with creatures.

LOCM is also finite: each player can have up to
eight cards in their hand and six creatures on the
board (three on each lane). A creature may have
any combination of the six abilities present in the
game, which affect the combat rules regarding
that creature.1

3. Related Work

The first collectible card game, Magic: the
Gathering, dates from 1993. It was not un-
til the second half of the 2010s that the genre
gained popularity among AI researchers. Compe-
titions held at conferences such as the AAIA’17
Data Mining Challenge (Janusz et al., 2017) and
the Hearthstone AI competition (Dockhorn and
Mostaghim, 2019) had an important role in fur-
ther encouraging research on CCG AI. In light
of this new popularity, Legends of Code and
Magic was released as a simpler research alter-
native to the extensive complexity of commercial
CCGs (Kowalski and Miernik, 2018).
Recently, deep reinforcement learning (DRL)

approaches have surpassed tree-search approaches
and have become the new state-of-the-art in
LOCM. ByteRL, the current best LOCM AI
player, employed optimistic smooth fictitious play
using neural networks trained with DRL to find
the best responses and, ultimately, Nash equilib-
ria (Xi et al., 2023). The approach considers both
deck-building and battling as a single episode. A
deck-building network first constructs a deck and
provides a deck embedding to serve as one of the
inputs of the battle network. The battle network
plays through the rest of the episode, following
a state and action space inspired by our previ-
ous work. Its architecture includes many fully-
connected layers and a long short-term memory
layer (Hochreiter and Schmidhuber, 1997) to be
able to remember past battle states. A third
network calculates the value function for a game
state, taking the deck and battle embeddings as
input and processing them through a single fully-
connected layer. Both the deck-building and the

1For a comprehensive list of LOCM 1.5’s rules, see
https://legendsofcodeandmagic.com/COG22/LOCM1.

5-RULES.pdf
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battle network use an invalid action mask mecha-
nism, which we found in preliminary experiments
to be of critical importance.

Trained with 24 GPUs for around 72 hours
(resulting in a training budget of billions of
episodes), ByteRL won the 2022 edition of the
Strategy Card Game AI (SCGAI) competition by
a considerable margin. It achieved an overall win
rate of 84.41%, outperforming other two unpub-
lished DRL approaches, NeteaseOPD (75%) and
Inspirai (67.57%), which use the Proximal Policy
Optimization algorithm (PPO) (Schulman et al.,
2017) to train networks for battling. ByteRL’s
methodology was improved and ported to Hearth-
stone, where it defeated a high-ranking human
player in best-of-five matches (Xiao et al., 2023).

Past efforts mostly relied on tree-search algo-
rithms such as Minimax (Russell and Norvig,
2020, Chapter 5.2) and Monte Carlo tree search
(MCTS) (Browne et al., 2012). Some notable ex-
amples for LOCM are DrainPowerAgressive (2021
SCGAI winner; unpublished), Chad (2020 SC-
GAI winner) (Witkowski et al., 2020), and Coac
(2019 SCGAI winner; unpublished). Tree-search
algorithms require no training but demand signif-
icantly higher execution times than trained DRL
agents (most restrict their time to the SCGAI
competition time limit of 200 ms per turn), which
disfavors them for most playtesting or game-
balancing applications.

Approaches using purely evolutionary algo-
rithms to battle in CCGs are also present in the
literature. Specifically, Montoliu et al. (2020) ap-
plied the N-Tuple Bandit Evolutionary algorithm
to tune the parameters of a heuristic function
that plays LOCM. The unpublished agent Zylo
from the SCGAI competition is also an example
of a similar endeavor. Despite requiring evolution
times comparable to DRL training times and act-
ing fast, these approaches, to date, considering
the results from past SCGAI competitions, seem
not to have achieved state-of-the-art performance.

The deck-building process can vary from game
to game, and many commercial games feature
game modes with different deck-building pro-
cesses. The most common one, called constructed,
involves selecting cards from a fixed, predeter-

mined card pool. This allows for offline searches
to be executed within that card pool, often gen-
erating a select list of best deck archetypes that
players follow with little variation. Evolution-
ary approaches dominate this deck-building mode
(Garćıa-Sánchez et al., 2016; Fontaine et al.,
2019). Some approaches focus on generating cre-
ative decks rather than optimizing their win rate
(França et al., 2023).
LOCM employs a semi-constructed deck-

building process in which a different deck should
be constructed for each match with procedurally
generated cards. This requires online approaches
that are able to evaluate unforeseen cards. Due
to its novelty, ByteRL is, at time of writing,
the solely available paper on semi-constructed
deck-building. Another online game mode is the
arena mode, which was used in earlier versions
of LOCM, and is also present in most commer-
cial games. In arena, players incrementally build
decks in a drafting process: at each draft turn, the
game presents a random sample of cards from its
card pool, and the player picks one to add to their
initially empty deck; after a fixed number of turns,
the player has a complete deck. Arena also figures
evolutionary and DRL approaches (Kowalski and
Miernik, 2020; Vieira et al., 2023), and the player
community maintains websites like HearthArena2

and DraftSim3 that gather the players’ collective
knowledge to determine the best card picks.
In all CCG literature, the feature extraction

process is often a collection of all numeric vari-
ables in the game state and may include some
hand-engineered features. Magic: the Gathering
cards and Hearthstone cards may have their in-
game effects described in natural language, which
makes thoroughly extracting card features an AI
challenge on its own. While most work on CCGs
so far simply ignores card text, some efforts have
been made using word2vec models (Swiechowski
et al., 2018; Janusz et al., 2018) and long short-
term memory layers (Zuin et al., 2022).
A forward model is needed either for calculating

next states in tree searches, generating datasets

2Available at https://www.heartharena.com/
3Available at https://draftsim.com/
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of game states, calculating fitness in evolutionary
algorithms, or learning by interaction with rein-
forcement learning. Most of the literature uses
open-source implementations of the game’s rules,
such as Magarena,4 Sabberstone,5 or Metastone,6

which often come with limitations (such as not
having all cards or all rules) but are considered
close enough to the original game.

Most battle agents, being DRL approaches or
not, apply post-processing strategies to improve
their win rates. The most common strategy is
called one-turn kill, which calculates whether an
all-out attack would result in victory. If so, there
is no need to consider other actions. Another
strategy, present especially in DRL approaches
that output a probability distribution over all
valid actions, is to select an action using the
argmax function instead of the usual softmax
function. In other words, it consists of selecting
the action with the highest probability on the dis-
tribution instead of sampling from it. The expla-
nation is that CCG battles are sensitive to subop-
timal actions: more than in most games, a single
suboptimal action can drastically turn the tide in
favor of the opponent, and argmax yields a lower
chance of selecting such action than softmax.

The recent developments in the field, particu-
larly those involving DRL, created stronger and
faster CCG agents than ever. Nevertheless, many
research challenges remain. This paper is an ef-
fort towards increasing sample efficiency to re-
duce training time while keeping execution time
low, allowing further performance improvements
towards superhuman level. By leveraging such
superhuman level agents (i.e., in our definition,
agents that can achieve higher win rates than
humans and play faster than humans), better
playtesting and game-balancing tools and pro-
cesses would be possible. We propose enhance-
ments to the methodology we proposed in our
previous work in order to pursue these goals.

4https://magarena.github.io
5https://github.com/HearthSim/SabberStone
6https://github.com/demilich1/metastone

4. Methodology

In this work, we use deep reinforcement learn-
ing (DRL) to battle in collectible card games. To
do so, we first formulate the problem of acting
in a battle as a Markov decision process (MDP)
and define our base approach. Afterwards, we de-
scribe the improvements we propose for the base
approach and the necessary modifications to the
MDP formulation. Lastly, we discuss extending
this methodology to other CCGs.

4.1. Problem Formulation

As discussed in Section 2, a match in LOCM
consists of a deck-building phase and a battle
phase. During the battle, the players should take
turns performing actions with the objective of
depleting their opponent’s health points. The
Markov decision process (MDP) we constructed
to represent a LOCM battle is a tuple (S,A, T,R)
whose elements are defined next.
The set of states S, also called state space,

is the set of all possible configurations a battle
can be in from the point of view of the player. A
LOCM battle configuration has a few variables:
(i) The player and opponent statistics (health
points, mana points, and number of cards to be
drawn next turn); (ii) Cards in the player’s hand;
(iii) The player’s creatures on the board; and
(iv) The opponent’s creatures on the board. Al-
though the opponent also has cards in their hand,
and both players have a deck, these are not vis-
ible information to the player and thus are not
considered in a state. Still, the aforementioned
variables yield a virtually infinite state space.
The set of actions A, also called action space,

is the set of all possible actions a player can per-
form in LOCM. They involve the summon, use,
attack, and pass actions described in Section 2.
Considering all possible combinations of actions
and parameters, our action space contains a to-
tal of 145 actions. Not all actions are valid in all
states, however. We hereafter use A(s) to repre-
sent the subset of A containing the valid actions
for the player in state s ∈ S.
The transition function T (s, a) takes a state

s ∈ S and an action a ∈ A(s) and returns the re-
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sulting state from performing a when in s, follow-
ing the rules of the game (e.g., attacking the op-
ponent with a creature will result in a state where
the opponent has fewer health points equivalent
to that creature’s attack).
The reward function R(s, a, s′) takes a state

s ∈ S, an action a ∈ A(s), the resulting state
s′ ∈ S and returns a numeric reward, representing
how good (or bad) it is to perform a when in s. We
employ a win-loss reward function, a widely used
reward function in the game-playing AI literature.
It rewards positively on victories and negatively
on losses. Formally,

R(s, a, s′) =


0,

if the battle was not
finished in s′,

1, if the battle was won in s′,

−1, if the battle was lost in s′.

Finding a policy π(s) that maps every s ∈ S to
an action a ∈ A(s), is sufficient to play a battle
in LOCM. In our approach, we find such policies
with deep reinforcement learning.

4.2. Base Approach

We use a variant of the Proximal Policy Op-
timization (PPO) algorithm (Schulman et al.,
2017), a standard go-to algorithm in deep rein-
forcement learning. Alongside PPO, we use a neu-
ral network consisting of standard fully-connected
layers that take as input a numerical representa-
tion of the game state. It has two output heads:
the first has 145 values and is followed by a soft-
max function, representing the policy π(s) for the
game state s received as input. The second has a
single value, representing the value function Vπ(s)
for the game state s received as input7 (PPO uses
this estimated value function to calculate its loss).
Since not all 145 actions are valid at any given

state, we apply an invalid action mask (Huang

7The value function Vπ(s) of a state s represents the ex-
pected sum of rewards (discounted by the hyperparameter
γ) obtained by following the policy π from s until the end
of the episode. In this formulation, where rewards repre-
sent wins and losses, the value function can also be viewed
as estimating the discounted probability of winning at a
state s.

and Ontañón, 2022) to the policy: before the soft-
max activation, all logits that refer to invalid ac-
tions are set to −∞. As a result, they have zero
probability in the resulting softmax distribution.
Being an algorithm from the reinforcement

learning family, PPO learns from experience – in
this context, by playing battles. In each battle
turn, we convert the game state to a numeric vec-
tor. With the policy given as output by the net-
work, we sample an action and perform it in the
game. Figure 2 illustrates this interaction loop.

Game Player statistics

Cards in hand

Own creatures

Enemy creatures

+

Action 
(e.g., attack creature #5 with creature #2)

Agent 

Figure 2: Interaction loop between our agent and the game
during a battle in LOCM. The agent receives a representa-
tion of the game’s current state and decides which action
to perform.

To build the numeric representation of the
game state, we select all three statistics of each
player, namely, their health points, mana points,
and amount of cards to be drawn next turn. Plus,
from the cards in the player’s hand, we select the
card type, mana cost, attack, defense, abilities,
and the health, card draw, and area modifiers.
From the creatures in the board, we select at-
tack, defense, abilities, and whether the creature
can attack this turn (if it belongs to the player).
A zero vector represents empty card slots on the
players’ hands and board.
Except for the card type and abilities, all the

listed state features are already numeric. We nor-
malize them by dividing each feature by its max-
imum absolute value. As a result, all numbers
lie in the [−1, 1] range. We apply one-hot encod-
ing to convert the card type, a categorical feature.
We then convert the remaining binary features by
considering true and false values as 1 and 0. Table
1 shows the total number of features in the game
state and its parts.
The training battles are carried out in self-play,

i.e., our agent plays against a version of itself,
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Table 1: Number of features in a game state and in each
of its parts.

Feature group
Features
per unit Amount

Total
features

Player statistics 3 2 6

Card in hand 17 8 136

Own creature on board 9 6 54

Enemy creature on board 8 6 48

Total 244

which is updated from time to time. The exact
frequency of this update, the number of layers
and neurons on each layer, the activation func-
tions, and the PPO algorithm’s hyperparameters
are either set to a sensible value or found via a
hyperparameter tuning process.

4.3. Alternative Approaches

Starting from this base approach, we discussed
in our previous work alternative approaches to
mitigate its limitations and improve performance.
In the next paragraphs, we describe the ones we
explored.
Diverse training opponents. As shown in

our previous work, training the base approach in
self-play frequently led the algorithm to local min-
ima. In other words, the agent learned efficient
strategies to beat its earlier version that were not
necessarily efficient against other opponents. In
turn, training against a fixed opponent also biased
the agent into strategies that outperform that spe-
cific opponent (and not necessarily others). To
remedy this, we propose a more diverse set of ad-
versaries, including battles in self-play and battles
against another agent. We hereafter refer to this
alternative approach as DTO.
Reward shaping. Our base win-loss reward

function is sparse, i.e., most states receive no
reward. Thus, the agent is guided only by
whether it wins the battle, harming good choices
made during defeats and analogously overestimat-
ing bad choices made during victories. Agents
with sparse reward models notoriously need more
episodes to learn. In reinforcement learning, re-
ward shaping is a common technique used to
speed up learning by giving non-zero rewards

for performing actions that usually lead to vic-
tory (Mataric, 1994).
Reward shaping, however, can lead the agent

to deviate from its goal by learning strategies
that maximize executing rewarding actions with
no regard to its actual objective. Ng et al.
(1999) showed that potential-based rewards are
a good choice to avoid this problem. We then
propose two alternative approaches with modi-
fied potential-based reward functions, hereafter
referred to as RS1 and RS2. The first, RS1,
rewards the agent proportionally to the number
of health points lost by the opponent compared
to the previous state, in addition to the win-loss
reward. The second, RS2, rewards the agent pro-
portionally to the score gain compared to the pre-
vious state. This score is calculated with a func-
tion derived from the Strategy Card Game AI
competition participant Coac (Le, 2019). Despite
not including the win-loss reward, the score func-
tion also rewards wins and losses similarly. For-
mally:

RRS1(s, a, s
′) = R(s, a, s′) + Φ1(s

′)− Φ1(s),

RRS2(s, a, s
′) = Φ2(s

′)− Φ2(s).

Where:

Φ1(s) = −max(0, opponent health in s)

30
,

Φ2(s) = min

(
1,max

(
− 1,

Coac(s)

2000

))
.

Deck information. A piece of known infor-
mation that is not considered in our base state
representation is the player’s deck. Despite not
knowing its order after the initial shuffle, we know
which cards are there. LOCM 1.2, the version
used in our previous work, had only 160 possi-
ble cards. In the new 1.5 version, cards are gen-
erated procedurally, causing a much higher card
variance than before. New state-of-the-art ap-
proaches such as ByteRL (Xi et al., 2023) also
incorporate such information. This way, we pro-
pose an alternative approach where we add a vec-
tor containing the average features of all cards
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in the player’s deck. Using the average instead
of listing all cards, we avoid tripling the number
of features in a state or implying a specific deck
order. This alternative approach is hereafter re-
ferred to as DI.

4.4. Extensions to Other Games
While our methodology fits LOCM, it may re-

quire some adjustments to be applicable to other
commercial CCGs. We provide a non-exhaustive
discussion of these potential adjustments below.
Commercial CCGs typically have cards with

more attributes compared to LOCM, which only
has six combat abilities. For instance, in CCGs
likeMagic: the Gathering, cards can have abilities
described in natural language in a considerable
fraction of the card pool. Thus a more elaborate
card feature extraction process is needed to ex-
tend this methodology to other CCGs.
In LOCM, at all moments, a card can be in

three different places: in a deck, in a hand, or on
the board. The board can be further divided into
the left and right lanes. Other CCGs may have
more zones, such as the graveyard and the ex-
ile zones in Magic: the Gathering. An extension
of this methodology should encode zones other
than the deck, the hand, and the board in the
state space. Similarly, the action space should be
reworked. In Hearthstone, each hero (a charac-
ter representing the player) has a unique power
that can be used by the player and should also be
considered as a possible action. Cards can also
possess diverse actions beyond playing or attack-
ing, such as card draw, card destruction, healing,
and other effects that impact the game state or
interact with other cards in various ways. Enu-
merating all possible actions, as done in this work
and the state-of-the-art LOCM approaches, would
also not be possible in games where the number
of creatures may be infinite.
Moreover, DRL requires playing a large num-

ber of battles. The forward models (i.e., the bat-
tle simulators) for more complex games should be
sufficiently optimized. Given the extension and
intricacy of the rules book in some CCGs,8 us-
ing a forward model with simplified rules (such as

8For instance, as of the time of writing, the English

Magarena for Magic: the Gathering) can be an
option.
Lastly, in LOCM, mana is increased by one

point per turn. However, in some CCGs, increas-
ing mana is not trivial and should be considered
part of the strategy. Mana may be acquired by
playing specific cards, such as land cards, or by
discarding cards from the hand. Additionally,
mana in some CCGs may have multiple types that
should be taken into account. While a DRL ap-
proach that incorporates a mechanism to handle
invalid actions may ensure compliance with the
game rules, these aspects can significantly com-
plicate the game dynamics and impact the design
of state and action spaces.

5. Experiments

In this section, we describe our experiment
setup, our hyperparameter tuning, and the exper-
iments themselves, comparing the base and alter-
native approaches, along with their results.

5.1. Setup

We used the stable-baselines3 library (version
1.4.0) (Raffin et al., 2021) to train our agents and
the MaskablePPO implementation of the PPO
algorithm present in the auxiliary sb3-contrib
library (version 1.4.0). As a forward model,
we used the gym-locm library (version 1.4.0)
(Vieira et al., 2020), which contains an com-
plete open-source implementation of LOCM 1.5’s
rules exposed as OpenAI Gym (Brockman et al.,
2016) environments, to facilitate the use of rein-
forcement learning algorithms. Using the Gym
paradigm, we minimize the agent-game commu-
nication overhead present in the original engine,
which is critical for approaches that require the
simulation of large amounts of matches.
We trained the agents for 100,000 episodes.9

The training agent and their opponent switched

version of the Magic: the Gathering rules book contains a
total of 281 pages.

9Preliminary experiments suggested that 100,000
episodes were sufficient for the agents to display coher-
ent behavior and not make many terrible choices during
the matches.
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roles (who plays first and second) in every
episode. Following best practices in reinforce-
ment learning experimenting (Colas et al., 2019),
we stopped training every 1,000 episodes to save
the network’s parameters and evaluate the agent
in an offline manner: the agent faced a fixed
opponent (so all evaluations are comparable)
during 250 episodes each, and we extracted its
win rate and other statistics.

The opponent battle agent used in the training
for the DTO approach and in all evaluations
is called one-step lookahead (OSL), one of the
agents used by Kowalski and Miernik (2020)
and Vieira et al. (2023). During the evaluation,
actions are sampled from the policy with the
argmax function instead of the softmax function.
Although in our previous work, the deck-building
phase of training and evaluation LOCM matches
was played by choosing random cards, prelimi-
nary experiments showed that choosing randomly
in LOCM 1.5 yields considerably worse decks
than in LOCM 1.2. For this reason, in this paper,
we use the deck-building agent from the Inspirai
submission10 to the Strategy Card Game AI
competition instead of choosing randomly. As in
the choice of battle agent to evaluate, we selected
the best agent available whose run-time speed
was compatible with the number of matches we
needed to simulate.

We conducted all training sessions on a ma-
chine with an Intel Core i7-8700 3.2GHz proces-
sor, 16GB of RAM, and an NVIDIA GeForce
GTX 1050 Ti graphic card with 4GB of VRAM.
We used Python 3.8.10, PyTorch 1.11.0, CUDA
11.4, and the NVIDIA driver version 470.129.064
in Ubuntu 20.04. We used 4-core CPU parallelism
for battle simulations and the GPU for neural net-
work operations. The experiments used a small
fraction of the machine’s memory and computing
power. The experiment code and instructions to
reproduce them are available on GitHub11.

10Available at https://legendsofcodeandmagic.com/
COG22/

11URL omitted during the double-blind review process.

5.2. Hyperparameter Tuning

To tune our hyperparameters, we use the im-
plementation of the Bayesian optimization al-
gorithm (Falkner et al., 2018) available in the
Weights & Biases platform.12 The algorithm runs
training sessions initially with random sets of hy-
perparameters and uses their win rate in evalua-
tions as input to explore the most promising re-
gions of the hyperparameter space. We executed
25 training sessions of the base approach this way
and used the best set of hyperparameters in all
subsequent experiments. Table 2 lists all hyper-
parameters considered, their origin, value ranges,
and best values.
We found some patterns in the best sets of hy-

perparameters. They possessed shallow networks
containing one or two layers with 250 to 500 neu-
rons each. The highest batch size (4096) and
amount of minibatches (4096) were preferred, as
well as a low number of epochs (1 to 3). Fi-
nally, most preferred to update the opponent’s
network parameters in self-play every 100 or 1,000
episodes. This is a striking difference from our
previous work, where deeper networks and smaller
batch sizes achieved the best results.

5.3. Results

In our first experiment, we compare our base
approach to the DTO approach, where the
agents were trained simultaneously in self-play
and against a fixed opponent. Using the best
set of hyperparameters found, we executed eight
training sessions of the base approach with differ-
ent random seeds to increase the significance of
the results. We repeated this with the DTO ap-
proach, using the same eight random seeds. Fig-
ure 3 shows the average win rate of each approach
throughout the 100,000 training episodes.
The results show that both approaches had

very similar performances, reaching an average of
around 50% of win rate against the OSL agent.
Paired student t-tests executed for every check-
point suggest that, during almost all training, the
curves had no significant differences. However,

12Available at https://wandb.ai/
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Hyperparameter Value range Optimized value Origin

Opponent update frequency
Every 100, 1,000, or

10,000 episodes
Every 100 episodes Self-play

Depth of the network 1 to 7 layers 1 layer
Neural network

Width of the hidden layers 32 to 512 neurons 501 neurons

Discount factor (γ) 0.99 (fixed) 0.99

PPO
algorithm

Batch size
64, 128, 256, 512,

1024, 2048 or 4096 steps
4096 steps

Amount of mini-batches
Batch size divided by
1, 2, 4, 8, or by itself

4096 mini-batches

Amount of epochs 1 to 5 epochs 2 epochs

Clip range 0.2 (fixed) 0.2

Learning rate 5× 10−2 to 1× 10−6 5.8381× 10−3

Value function coefficient 1 (fixed) 1

Entropy coefficient 5× 10−3 (fixed) 5× 10−3

Table 2: Hyperparameters optimized, their value ranges, best value found, and where they originate.
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Figure 3: Win rate of the base and DTO approaches
throughout training, in off-line evaluations against the
OSL battle agent. The solid line and the shaded area
represent, respectively, the average and the standard de-
viation of 4 training sessions.

the base approach has a considerable advantage
when comparing the best agent trained, achiev-
ing 59.2% of win rate at the 53k training episodes
checkpoint vs. 56% of win rate at 92k from the
DTO approach. Initially, the results indicate that
adding a fixed agent alongside self-play did not
improve over pure self-play.

Our second experiment compared the base
approach to the two reward-shaping approaches,
RS1 and RS2. They were trained eight times
using the same eight random seeds as in the
previous experiment. Figure 4 shows the average
win rate of each approach throughout the 100,000
training episodes.

As in the previous experiment, no approach was
clearly better than the others. Win rates again
reached around 50%, and checkpoint-wise paired
student t-tests pointed out no significant differ-
ences between RS2 and the base approach. How-
ever, the base approach was significantly better
than RS1 with p < 0.05 in two intervals: from
32k to 40k and from 58k to 73k. Again, the
base approach generated the best agent: 59.2%
of win rate vs. 55.2% and 56.8% from the RS1
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Figure 4: Win rate of the base, RS1 and RS2 approaches
throughout training, in off-line evaluations against the
OSL battle agent. The solid line and the shaded area
represent, respectively, the average and the standard de-
viation of 4 training sessions.

and RS2 approaches, respectively. With no re-
ward shaping, the average reward is proportional
to the win rate. RS1 and RS2 exhibited average
rewards slightly different from those of the base
approach, as expected.

Lastly, we investigated whether the DI ap-
proach, which adds information about the player’s
deck to the game state, achieves better results
than the base approach. We also executed eight
training sessions with DI with the same eight ran-
dom seeds as in the previous experiments. Figure
5 shows the average win rate of each approach
throughout the 100,000 training episodes.

Following the pattern, DI also seemed not to
be an improvement over the base approach. Both
achieved around 50% of the win rate, and paired
student t-tests found no significant differences
in both curves. The best agent trained by DI
reached 56.4% of win rate during evaluation, while
the base approach’s best had 59.2%. These results
suggest that adding deck information to the game
state was not worth it.

Before training, agents usually win around 5%
to 15% of the battles against OSL and can reach
around 30% in the first 1,000 episodes. As ex-
pected, the most increase in win rate happens in
the first 10,000 episodes. After that, improve-
ments are slower but still happen. The slope
of the curve suggests that, if left training for
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Figure 5: Win rate of the base and DI approaches through-
out training, in off-line evaluations against the OSL battle
agent. The solid line and the shaded area represent, re-
spectively, the average and the standard deviation of 4
training sessions.

more than 100,000 episodes, agents could reach
higher win rates. However, preliminary experi-
ments found that they peaked not long after. This
is unsurprising since our hyperparameters were
tuned considering a budget of 100,000 episodes,
and their behavior after that was not assessed.

In addition to having similar win rates along
training, all approaches had similar values of
other statistics. The length of the battles con-
verged to a little more than six turns, on aver-
age (three for each player). This could be due
to the agents learning aggressive strategies since,
in our previous work, the average was 7.25 turns.
We believe, however, that that is a property of
LOCM 1.5, which introduced procedurally gen-
erated cards that are, on average, more powerful
than those of LOCM 1.2, providing enough fire-
power to make battles end earlier. These six turns
translated into an average of 25 actions, mean-
ing each player performed around four actions per
turn (three plus the action of passing the turn).

A forward pass in the neural network of a
trained agent returns a single action and takes
around 2 milliseconds, including the time required
to calculate the valid actions and to advance the
forward model’s state. Considering four actions
per turn on average, playing an entire turn takes
around 8 milliseconds.

Agents converged to perform attack actions
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24% of the time. 35% were use actions, 21% were
summon actions and 20% were pass actions. This
is a change from LOCM 1.2, where attack actions
represented 44% of all actions, and use actions
were the less prominent type. It is consistent with
the greater importance that item cards gained in
the 1.5 version.
The RS1 approach was the only one with

slightly different statistics: battles were narrowly
shorter (around 5.8 turns), and use actions were
around one percentage point more frequent, bor-
rowing that percentage point from summon ac-
tions. It may be due to rewards being awarded
for reducing the opponent’s health points, which
may have encouraged the agents to win quicker,
e.g., avoiding superfluous actions such as sum-
moning a creature before issuing the final attack.
The greater use of items may have to do with
them being a relevant source of opponent damage
alongside attacking.

6. Discussion

Overall, our results indicate that the alterna-
tive approaches we explored did not yield signif-
icant improvements or deteriorations in the per-
formance of the base approach, which was trained
in self-play, with no reward shaping, and contain-
ing no deck information. An exception was RS1,
one of our approaches with reward shaping, which
achieved significantly worse win rates than the
base approach in some parts of its training. This
finding is surprising, considering the positive im-
pact that these suggested alterations often have
in other domains. One possible explanation could
be the limited capacity of the shallow networks
used in our experiments. While they may have
been sufficient for the base approach, they might
not have allowed for the incorporation of addi-
tional complexity. The choice of 1-layer networks
in our hyperparameter tuning may have been in-
fluenced by the limited training budget we pro-
vided: 100,000 episodes are enough for most toy
reinforcement learning problems, but a strategy
game with a virtually infinite state space, such
as LOCM, may benefit from more. Recent ad-
vances in the field, such as ByteRL, provide evi-

dence in favor of using larger training budgets, as
it was trained with billions of matches. A com-
promise between a sufficient training budget and
viable computational power requirements is cer-
tainly paramount.

Achieving 59.2% of win rate against a mid-
level battle agent such as OSL positions our ap-
proach distant from the new DRL state-of-the-art
of LOCM, which would reach win rates higher
than 90%. Furthermore, the need for a larger
training budget emphasizes a research direction
we suggested in our previous work that lever-
ages permutation-equivariance and permutation-
invariance to improve sample efficiency in CCGs.
To the best of our knowledge, the current DRL
literature on LOCM (this paper included) consid-
ers, for instance, every card slot in the player’s
hand as a completely different set of features.
This way, the neural networks must learn how to
deal with a card in hand multiple times (once for
each card slot in the hand). This is also true be-
tween every card on the board and every action of
the same type. Since the order of cards in hand
and on the board does not matter (i.e., moving
a card from the first slot to the fifth should not
change the agent’s decision) an approach equiv-
ariant to card order could greatly reduce the ef-
fort necessary to learn to play. Deep Sets (Za-
heer et al., 2017), Set Transformers (Lee et al.,
2019), or other permutation-equivariant architec-
tures (Bloem-Reddy and Teh, 2020) used in other
domains may be a good fit.

Training a deck-building agent in conjunction
with a battle agent could be another way to im-
prove performance, such as done by Xi et al.
(2023). Instead of optimizing a battle policy for
a specific deck-building strategy, both can evolve
jointly and be tuned for each other. This may
lead, however, to less stable training.

A further step in making better CCG battlers,
not necessarily linked to sample efficiency, is to
address the hidden information in the game com-
pletely. Our DI approach included the average
feature vector of all cards in the player’s deck,
but other efforts could also be made. First, this
average vector could dynamically reflect the cards
in the deck that had not yet been drawn instead
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of statically reflecting the whole initial deck. This
would give more precise information about what
the player can expect in the remainder of the bat-
tle. Another idea is to use a learned latent rep-
resentation for the deck, since our results suggest
that using only the average of the card features
might not convey meaningful information. This
latent deck representation could use larger vectors
than the cards, allowing a richer representation.
Moreover, the opponent’s hand could be predicted
since we know which cards were available during
deck construction. One could tune those proba-
bilities by analyzing the opponent’s play style and
strategy. In commercial games, the metagame
could also be leveraged to tune them further. In
fact, Bursztein (2016) was able to guess the next
card an opponent in Hearthstone would play with
an accuracy of up to 95%.
Superhuman level agents for CCGs that can

play thousands of matches per second may greatly
help designers of commercial CCGs in playtesting
new sets of cards before they are released. This
would alleviate the common banning or nerfing
of cards due to unforeseen imbalances, a long-
standing, pervasive problem in the CCG indus-
try. By also providing challenging AI opponents
for amateur and professional players, strong and
fast CCG agents can be of benefit to the industry,
players, and AI research.

7. Conclusion

In this paper, we have proposed several alterna-
tive approaches to increase the sample efficiency
and, ultimately, the performance of our deep re-
inforcement learning approach to battling in col-
lectible card games featured in our previous work
(Vieira et al., 2022). The approach uses the Prox-
imal Policy Optimization algorithm (Schulman
et al., 2017) to train battle agents in self-play,
with Legends of Code and Magic, a CCG designed
for AI research, as a testbed. The alternatives in-
clude: (i) training in self-play and against a fixed
opponent simultaneously; (ii) using reward func-
tions other than win-loss (i.e., reward shaping);
and (iii) adding information about the player’s
deck to the game state representation.

We evaluated performance by measuring the
win rate against a fixed battle agent. Based on
our experiments, none of the alternatives showed
significant improvement or degradation compared
to the base approach, with the exception of one
of the reward shaping alternatives, which showed
significant degradation at some parts of its train-
ing. We thoroughly discussed the results and pro-
posed other potential avenues to enhance sample
efficiency and performance. Moreover, we identi-
fied the main challenges associated with extending
our DRL approach to more complex CCGs.
We consider this work a step toward super-

human game-playing agents for collectible card
games, which we understand as one of AI’s cur-
rent milestones. We hope it encourages further
research on this challenging and promising topic.
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